• 제목/요약/키워드: 학습 파라미터

검색결과 510건 처리시간 0.039초

단말간 직접 통신 네트워크를 위한 심층 강화학습 기반 분산적 스케쥴링 알고리즘 (A Distributed Scheduling Algorithm based on Deep Reinforcement Learning for Device-to-Device communication networks)

  • 정무웅;김륜우;반태원
    • 한국정보통신학회논문지
    • /
    • 제24권11호
    • /
    • pp.1500-1506
    • /
    • 2020
  • 본 논문에서는 오버레이 단말 간 직접 (Device-to-Device : D2D) 통신 네트워크를 위한 강화학습 기반 스케쥴링 문제를 연구한다. 강화학습 모델 중 하나인 Q-learning을 이용한 D2D 통신 기술들이 연구되었지만, Q-learning은 상태와 행동의 개수가 증가함에 따라서 높은 복잡도를 유발한다. 이러한 문제를 해결하기 위하여 Deep Q Network (DQN) 기반 D2D 통신 기술들이 연구되었다. 본 논문에서는 무선 통신 시스템 특성을 고려한 DQN 모델을 디자인하고, 피드백 및 시그널링 오버헤드를 줄일 수 있는 DQN 기반 분산적 스케쥴링 방식을 제안한다. 제안 방식은 중앙집중식으로 변수들을 학습시키고, 최종 학습된 파라미터를 모든 단말들에게 전달한다. 모든 단말들은 최종 학습된 파라미터를 이용하여 각자의 행동을 개별적으로 결정한다. 제안 방식의 성능을 컴퓨터 시뮬레이션을 통하여 분석하고, 최적방식, 기회주의적 선택 방식, 전체 전송 방식과 비교한다.

퍼지 LQRQL 제어 (Fuzzy LQRQL Control)

  • 김영일;김종호;박주영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.125-128
    • /
    • 2004
  • Q-learning은 강화학습의 한 방법으로서, 여러 분야에 널리 응용되고 있는 기법이다. 최근에는 Linear Quadratic Regulation (이하 LQR) 문제에 성공적으로 적용된 바 있다. 특히 시스템 모델의 파라미터에 대한 구체적인 정보가 없는 상태에서 적절한 입력과 출력만을 가지고, 학습을 통해 문제를 해결할 수 있어서 상황에 따라서 매우 실용적인 대안이 될 수 있다. 이에 따라 본 논문에서는 이러한 일반적인 LQR Q-learning(이하 LQRQL) 학습방법에 퍼지 모델을 이용하여 제어기를 설계하는 방법을 고려하고, 일반적인 LQROL 기법과 본 논문에서 제시한 방법의 결과를 비교하여 응용 가능성을 살펴보았다.

  • PDF

신경망 기반 음원 분리 시스템의 학습 속도 향상을 위한 음역대 강조 기법 (Frequency Range Enhancement for Faster Convergence of Neural Music Source Separation Systems)

  • 김민석;최우성;정순영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.567-569
    • /
    • 2020
  • 여러 악기가 섞여 있는 음원으로부터 원하는 악기 소리를 추출하는 음원 분리 기법 중 최근 신경망 기반 시스템이 활발히 연구되고 있다. 악기마다 고유의 음역대를 가진다는 사실에 감안하여, 연구진은 기존 음원 분리 신경망에 적은 수의 학습 파라미터를 추가하여 학습 속도를 대폭 향상시킬 수 있는 음역대 강조 기법을 제안한다.

유방 초음파 영상에서 질감 특성을 이용한 악성종양 분석 (Analysis of Malignant Tumor Using Texture Characteristics in Breast Ultrasonography)

  • 조진영;예수영
    • 융합신호처리학회논문지
    • /
    • 제20권2호
    • /
    • pp.70-77
    • /
    • 2019
  • 조기 유방암을 진단하기 위해서는 유방초음파 판독이 매우 중요하다. 초음파 검사는 초음파장비에 따라 화질의 차이가 심하게 나타날 뿐만 아니라 검사자의 경험과 숙련 정도에 따라 진단의 차이가 크게 나타난다. 따라서 정확한 진단과 치료를 위하여 객관적인 판단기준이 필요하다. 이에 본 연구에서는 GLCM(Gray Level Co-occurrence Matrix) 알고리듬을 적용하여 질감 특성을 분석하고 특징파라미터들을 추출하여 신경망분류기를 이용하여 유방암을 진단하였다. 유방초음파 영상은 정상 조직과 양성, 악성 종양으로 분류하여 질감 특성 파라미터 6가지를 추출하였다. 유방초음파검사로 진단된 정상 영상, 악성 및 양성종양 영상 각각 14증례를 대상으로 추출된 6개의 파라미터들을 적용하여 다층 퍼셉트론 신경망구조 역전파 학습방법으로 학습을 시켰다. 학습된 모델에 정상 유방 영상 51증례, 양성종양 영상 62증례, 악성종양 영상 74증례의 영상을 사용하여 분류한 결과 95.2%의 분류율을 나타내었다.

하이브리드 동정 알고리즘에 의한 최적 퍼지 시스템에 관한 연구 (A Study on Optimal fuzzy Systems by Means of Hybrid Identification Algorithm)

  • 오성권
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.555-565
    • /
    • 1999
  • 복잡하고 비선형적인 시스템의 규칙베이스 퍼지모델링을 위하여 퍼지시스템의 최적 동정알고리즘을 연구한다. 비선형 시스템은 퍼지모델의 입력변수와 퍼지 입력공간 분할에 의한 구조동정과 파라미터 동정을 통해 표현된다. 본 논문에서 규칙베이스 퍼지모델링은 비선형 시스템을 위해 퍼지추론방법과 두 종류의 최적화 이론의 결합에 의한 하이브리드 구졸를 이용하여 시스템 구조와 파라미터동정을 수행한다. 퍼지모델의 추론방법은 간략추론 및 선형추론에 의한다. 제안된 하이브리드 최적 동정 알고리즘은 유전자 알고리즘과 개선된 콤플렉스 방법을 이용한다. 여기서 유전자 알고리즘은 전반부 퍼지규칙의 멤버쉽함수의 초기 파라미터들을 결정하기 위해 사용되고 강력한 자동동조 알고리즘인 개선된 콤플렉스 방법은 정교한 파라미터들을 얻기 위해 수행된다. 따라서 최적 퍼지모델을 위해 전반부 파라미터 동정에는 하이브리드형의 최적 알고리즘을 이용하고 후반부 동정에는 최소자승법을 이용한다. 또한 학습과 테스트 데이터에 의해 생성된 퍼지모델의 성능결과 사이의 상호균형을 얻기 위해 하중계수를 가지는 합성 성능지수를 제안한다. 제안된 모델의 성능평가를 위해 두가지 수치적 예를이용한다.

  • PDF

파라미터 자기조정 퍼지제어기를 이용한 부하주파수제어 (Load Frequency Control using Parameter Self-Tuning Fuzzy Controller)

  • 이준탁;정동일;안병철;주석민;정형환
    • 한국지능시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.52-65
    • /
    • 1997
  • 이 논문은 전력계통의 부하주파수 제어를 위한 자기조정 퍼지제어기의 설계기법을 제시한다. 제안된 퍼지제어기의 파라미터 자기조정 알고리즘은 퍼지제어기의 추론값과 최적 제어기의 출력값들 사이의 오차를 감소시키는 네개의 방향 벡터를 사용하는 구배법에 기초를 둔다. 최적 제어기로부터 얻어진 입,출력 데이터쌍을 사용하여, 퍼지추론 룰의 전건부와 후건부에서의 파라미터들은 제안된 구배법에 으해 자동조정되고 학습되어진다. 시뮬레이션 결과, 제안된 퍼지제어기가 종래의 제어기보다 우수한 제어성능을 보임을 확인하였다.

  • PDF

PSO를 이용한 FCM 기반 RBF 뉴럴네트워크의 최적화 (Optimization of FCM-based Radial Basis Function Neural Network using PSO)

  • 최정내;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1857-1858
    • /
    • 2008
  • 본 논문에서는 FCM 기반 RBF 뉴럴네트워크(FCM-RBFNN) 구조를 제안하고 PSO를 이용한 FCM-RBFNN의 구조 및 파라미터의 최적화 방법을 제시한다. 클러스터링 알고리즘은 퍼지 뉴럴 네트워크에서 멤버쉽함수의 중심점과 반경 등을 결정하는 학습에 일반적으로 사용된다. 제안된 FCM-RBFNN서는 방사기저함수로써 가우시안, 삼각형 타입 등의 정해진 형태를 사용하지 않고 데이터들 사이의 거리에 관계된 계산을 수행하는 FCM에 의해 결정된다. 기존의 RBFNN에서 후반부는 상수형태로써 방사기저함수의 선형결합으로써 표현되는 반면에 제안된 FCM-RBFNN의 후반부는 상수형, 선형, 2차식 등의 다양한 형태의 다항식으로 표현될 수 있으며 다항식의 계수는 WLSE를 이용하여 추정한다. FCM 기반 RBF 뉴럴 네트워크의 성능은 퍼지규칙의 수, 후반부 다항식의 차수 FCM의 퍼지화 계수에 의하여 결정기 때문에 FCM-RBFNN의 구조와 파라미터의 최적화가 요구된다. 본 논문에서는 PSO를 이용하여 FCM-RBFNN의 구조에 관련된 퍼지 규칙의 수, 후반부 다항식의 차수와 파라미터에 관련된 퍼지화 계수를 최적화한다. 또한 후반부 다항식의 계수는 WLSE를 사용하여 추정한다.

  • PDF

Interval Type-2 FCM based RBFNN의 도움으로 실현된 사례 및 에코 분류기 설계 : LSE와 WLSE의 비교연구 (Design of Event and Echo Classifier Realized with the Aid of Interval Type-2 FCM based RBFNN : Comparative Studies of LSE and WLSE)

  • 송찬석;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1347-1348
    • /
    • 2015
  • 본 논문에서는 기상레이더 데이터에서 섞여있는 강수에코 및 비강수에코를 분류하기 위하여 Interval Type-2 FCM based RBFNN의 도움으로 사례 및 에코 분류기의 설계를 제안한다. 학습과 테스트 데이터는 현재 기상청에서 사용하는 UF radar data를 사용하였으며, 사례 분류기와 에코패턴 분류기의 데이터를 각각 생성한다. 전처리 과정인 사례 분류를 통하여 강수사례 혹은 비강수사례를 분류하여 강수사례일 경우 에코패턴분류를 진행하며, 비강수사례일 경우 데이터에 관측된 모든 반사도 값을 제거한다. 사례 및 에코 분류기는 Interval Type-2 FCM based RBFNN을 통하여 패턴분류를 진행하며, 패턴분류 성능을 확인한다. 또한 후반부 파라미터의 동정 시, 각 규칙에 파라미터를 전역적으로 구하는 LSE와 각 규칙에 대한 파라미터를 독립적으로 구하는 WSLE의 비교연구를 수행한다. 분류기의 성능을 확인하기 위하여 사례 분류 후 에코패턴분류의 결과는 현재 기상청에서 사용하고는 품질검사(QC) 데이터와 비교하여 평가하였다.

  • PDF

정보 Granules 기반 퍼지 시스템의 최적화 (Optimization of fuzzy systems based on information granules)

  • 박건준;이동윤;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2567-2569
    • /
    • 2003
  • 본 논문은 비선형 시스템의 퍼지모델을 위해 정보 Granules 기반 퍼지추론 시스템 모델의 최적화를 제시한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 제안된 규칙베이스 퍼지모델은 HCM 클러스터링 방법, 컴플렉스 알고리즘 및 퍼지추론 방법을 이용하여 시스템 구조와 파라미터 동정을 수행한다. 두 가지 형태의 퍼지모델 추론 방법은 간략추론, 선형추론에 의해 시행된다. 본 논문에서는 퍼지모델의 입력변수와 퍼지 입력 공간 분할 및 입출력 데이타의 중심값을 구해서 후반부 다항식함수에 의한 정보 Granules 기반 구조 동정과 파라미터 동정을 통해 비선형 시스템을 표현한다. 전반부 파라미터의 동정에는 HCM 클러스터링 방법과 컴플렉스 알고리즘을 사용하고, 후반부는 표준 HCM 클러스터링과 표준 최소자승법을 사용하여 동정한다. 그리고 학습 및 테스트 데이타의 성능견과의 상호균형을 얻기 위한 하중값을 가진 성능지수를 제시함으로써 근사화와 예측성능의 향상을 꾀한다. 제안된 비선형 모델의 성능평가를 통해 그 우수성을 보인다.

  • PDF

파라메트릭 활성함수를 이용한 심층신경망의 성능향상 방법 (Performance Improvement Method of Deep Neural Network Using Parametric Activation Functions)

  • 공나영;고선우
    • 한국콘텐츠학회논문지
    • /
    • 제21권3호
    • /
    • pp.616-625
    • /
    • 2021
  • 심층신경망은 임의의 함수를 근사화하는 방법으로 선형모델로 근사화한 후에 비선형 활성함수를 이용하여 추가적 근사화를 반복하는 근사화 방법이다. 이 과정에서 근사화의 성능 평가 방법은 손실함수를 이용한다. 기존 심층학습방법에서는 선형근사화 과정에서 손실함수를 고려한 근사화를 실행하고 있지만 활성함수를 사용하는 비선형 근사화 단계에서는 손실함수의 감소와 관계가 없는 비선형변환을 사용하고 있다. 본 연구에서는 기존의 활성함수에 활성함수의 크기를 변화시킬 수 있는 크기 파라메터와 활성함수의 위치를 변화시킬 수 있는 위치 파라미터를 도입한 파라메트릭 활성함수를 제안한다. 파라메트릭 활성함수를 도입함으로써 활성함수를 이용한 비선형 근사화의 성능을 개선시킬 수 있다. 각 은닉층에서 크기와 위치 파라미터들은 역전파 과정에서 파라미터들에 대한 손실함수의 1차 미분계수를 이용한 학습과정을 통해 손실함수 값을 최소화시키는 파라미터를 결정함으로써 심층신경망의 성능을 향상시킬 수 있다. MNIST 분류 문제와 XOR 문제를 통하여 파라메트릭 활성함수가 기존의 활성함수에 비해 우월한 성능을 가짐을 확인하였다.