Analysis of Malignant Tumor Using Texture Characteristics in Breast Ultrasonography

유방 초음파 영상에서 질감 특성을 이용한 악성종양 분석

  • Cho, Jin-Young (Wellness hospital of radiology) ;
  • Ye, Soo-Young (Dept. of Radiological Science, College of Health Science, Catholic University of Pusan)
  • 조진영 (웰니스병원) ;
  • 예수영 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2019.06.02
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

Breast ultrasound readings are very important to diagnose early breast cancer. In Ultrasonic inspection, it shows a significant difference in image quality depending on the ultrasonic equipment, and there is a large difference in diagnosis depending on the experience and skill of the inspector. Therefore, objective criteria are needed for accurate diagnosis and treatment. In this study, we analyzed texture characteristics by applying GLCM (Gray Level Co-occurrence Matrix) algorithm and extracted characteristic parameters and diagnosed breast cancer using neural network classifier. Breast ultrasound images were classified into normal, benign and malignant tumors and six texture parameters were extracted. Fourteen cases of normal, malignant and benign tumor diagnosed by mammography were studied by using the extracted six parameters and learning by multi - layer perceptron neural network back propagation learning method. As a result of classification using 51 normal images, 62 benign tumor images, and 74 malignant tumor images of the learned model, the classification rate was 95.2%.

조기 유방암을 진단하기 위해서는 유방초음파 판독이 매우 중요하다. 초음파 검사는 초음파장비에 따라 화질의 차이가 심하게 나타날 뿐만 아니라 검사자의 경험과 숙련 정도에 따라 진단의 차이가 크게 나타난다. 따라서 정확한 진단과 치료를 위하여 객관적인 판단기준이 필요하다. 이에 본 연구에서는 GLCM(Gray Level Co-occurrence Matrix) 알고리듬을 적용하여 질감 특성을 분석하고 특징파라미터들을 추출하여 신경망분류기를 이용하여 유방암을 진단하였다. 유방초음파 영상은 정상 조직과 양성, 악성 종양으로 분류하여 질감 특성 파라미터 6가지를 추출하였다. 유방초음파검사로 진단된 정상 영상, 악성 및 양성종양 영상 각각 14증례를 대상으로 추출된 6개의 파라미터들을 적용하여 다층 퍼셉트론 신경망구조 역전파 학습방법으로 학습을 시켰다. 학습된 모델에 정상 유방 영상 51증례, 양성종양 영상 62증례, 악성종양 영상 74증례의 영상을 사용하여 분류한 결과 95.2%의 분류율을 나타내었다.

Keywords

References

  1. S. M. Kim, S. Y. Ye, "Analysis on the Occurrence Factors of High-Risk Diseases of Pregnant Women by the Degree of Obesity," The Korea Institute of Convergence Signal Processing, pp. 118-124, 2018.
  2. B. E. Adrada, S. Krishnamurthy, S. Carkaci, F. E P. Monetto, "Unusual Benign Tumors of the Breast," Journal of Clinical Imagung Science, vol. 5, no.2,pp. 1-5, 2015. https://doi.org/10.4103/2156-7514.150439
  3. Doi, Kunio., "Current status and future potential of computer-aided diagnosis in medical imaging," The British Journal of Radiology, pp. S3-S19, 2005.
  4. G.Y. Yoon, J. H. Cha, H. H. Kim, H. J. S., E. Y. C., and W. J. Choi, "Sonographic features that can be used to differentiate between small triple-negative breast cancer and fibroadenoma," Ultrasonography, vol. 37, no. 2, pp. 149-156, 2018. https://doi.org/10.14366/usg.17036
  5. J. Levman., E. Warner, P. Causer, A. Martel "Semi-Automatic Region-of-Interest Segmentation Based Computer-Aided Diagnosis of Mass Lesions from Dynamic Contrast-Enhanced Magnetic Resonance Imaging Based Breast Cancer Screening," J Digit Imaging, vol. 27, no. 5, pp. 670-678, 2014. https://doi.org/10.1007/s10278-014-9723-y
  6. J. Virmani, V. Kumar, N. Kalra, N. Khandelwal, "Characterization of Primary and Secondary Malignant Liver Lesions from B-Mode Ultrasound," J Digit Imaging., vol. 26, no. 6, pp. 1058-1070, 2013. https://doi.org/10.1007/s10278-013-9578-7
  7. R. Guo, G. Lu, B. Fei,"Ultrosound sound imaging Technologies for Breast Cancer detection and management -A review," Comput. Math Methods Med. vol.44, no. 1, pp. 37-70, 2018.
  8. W. K. Moon, C.M. Lo, J. M. Chang, C.S. Huang, J.H. Chen, R.F. Chang, "Quantitative Ultrasound Analysis for Classification of BI-RADS Category 3 Breast Masses," J Digit Imaging., vol.26, no.6, pp.1091-1098, 2013. https://doi.org/10.1007/s10278-013-9593-8
  9. S. I. Jung, "Ultrasonography of ovarian masses using a pattern recognition approach," Ultrasonography, vol. 34, no. 3, pp. 173-182, 2015. https://doi.org/10.14366/usg.15003
  10. Z. Zhou, S. Wu, K.J. Chang, W.R. Chen, Y.S. Chen, W.H. Kuo, C.-C. Lin, P.H. Tsui, "Classification of Benign and Malignant Beast Tumors in Ultrasound Images with Posterior Acoustic Shadowing Using Half-Contour Features," J. Med. Biol. Eng., vol. 35, pp. 178-187, 2015. https://doi.org/10.1007/s40846-015-0031-x
  11. S. M. Kim, H. H., J. M. Park, Y. J. Choi, H. S. Yoon, J. H. Sohn, M. H. Baek, Y. N. Kim, Y. M. Chae, J. J June, J.w. Lee, Y. H. Jeon, "A Comparison of Logistic Regression Analysis and an Artificial Neural Network Using the BI-RADS Lexicon for Ultrasonography in Conjunction with Introbserver Variability," J Digit Imaging, vol. 25, no. 5, pp. 599-606, 2012. https://doi.org/10.1007/s10278-012-9457-7
  12. M. M. Mehdy, P.Y.Ng, E. F. Shair, N. I. Md Saleh, and C. Gome, "Artificial Neural Networks in Image Processing for Early Detection of Breast Cancer," Computational and Mathematical Methods in Medicine, vol. 36, no. 3, pp. 124-150, 2017.