• Title/Summary/Keyword: 학습 집합

Search Result 554, Processing Time 0.044 seconds

A Study on the Implementation of an Automatic Segmentation System of Korean Speech based on the Hidden Markov Model (HMM에 의한 한국어음성의 자동분할 시스템의 구현에 관한 연구)

  • 김윤중;김미경;이인동
    • Journal of Information Technology Application
    • /
    • v.1 no.3_4
    • /
    • pp.1-23
    • /
    • 1999
  • 본 연구에서는 HMM(Hidden Markov Model) 및 Levelbuilding 알고리즘을 이용하여 인식대상 음소열의 표본 집합(훈련패턴 집합)을 입력으로 하는 음성의 자동 분할 시스템을 구현하였다. 본 시스템은 자연스럽게 발음되어진 연결음 음성으로부터 표준 음소모델을 생성한다. 본 시스템의 구성은 초기화 과정, HMM학습과정 그리고 Levelbuilding을 이용한 분리 및 CLustering 과정으로 구성되어 있다. 초기화 과정에서는 제어 정보를 이용하여 훈련패턴 집합으로부터 초기 음소 집합 군을 생성한다. Levelbuilding을 이용한 분리 및 Clustering 단계에서는 음소 모델과 제어 정보를 이용하여 훈련패턴들을 음소 단위로 분리하고, 분리된 후보 음소들을 Clustering하여 음소집합 군을 생성한다. 음소모델의 구성에 변화가 없을 때까지 이 작업을 반복 수행하여 최적의 음소모델을 생성한다. 본 연구에서는 3개 이하의 숫자단어로 구성된 연결되어 음성 패턴을 대상으로 실험하였다. 연결단어에 대한 음소의 표준모델 생성과정에서 가장 중요한 처리인 훈련패턴의 자동분할 과정을 분석하기 위하여 각 반복과정에서 분리된 정보를 그래프로 도시화하여 확인하였다.

  • PDF

A Study on the Rule-Based Selection of Trainging Set for the Classification of Satellite Imagery (위성 영상 분류를 위한 규칙 기반 훈련 집합 선택에 관한 연구)

  • Um, Gi-Mun;Lee, Kwae-Hi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1763-1772
    • /
    • 1996
  • The conventional training set selection methods for the satellite image classification usually depend on the manual selection using data from the direct measurements of the ground or the ground map. However this task takes much time and cost, and some feature values vary in wide ranges even if they are in the same class. Such feature values can increase the robustness of the neural net but learning time becomes longer. In this paper,we propose anew training set selection algorithm using a rule-based method. By the technique proposed, the SPOT multispectral Imagery is classified in 3 bands, and the pixels which satisfy the rule are employed as the training sets for the neutralist classifier. The experimental results show faster initial convergence and almost the same or better classification accuracy. We also showed an improvement of the classification accuracy by using texture features and NDV1.

  • PDF

A Study on the Validation Test for Open Set Face Recognition Method with a Dummy Class (더미 클래스를 가지는 열린 집합 얼굴 인식 방법의 유효성 검증에 대한 연구)

  • Ahn, Jung-Ho;Choi, KwonTaeg
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.525-534
    • /
    • 2017
  • The open set recognition method should be used for the cases that the classes of test data are not known completely in the training phase. So it is required to include two processes of classification and the validation test. This kind of research is very necessary for commercialization of face recognition modules, but few domestic researches results about it have been published. In this paper, we propose an open set face recognition method that includes two sequential validation phases. In the first phase, with dummy classes we perform classification based on sparse representation. Here, when the test data is classified into a dummy class, we conclude that the data is invalid. If the data is classified into one of the regular training classes, for second validation test we extract four features and apply them for the proposed decision function. In experiments, we proposed a simulation method for open set recognition and showed that the proposed validation test outperform SCI of the well-known validation method

Discriminative Training Algorithms for Speech Recognizers (음성인식기의 변별력있는 학습 알고리즘들)

  • 나경민
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.166-171
    • /
    • 1994
  • 기존의 음성인식기들은 일반적으로 간단하면서도 성능이 우수한 계층별 학습에 의해서 설계된다. 계층별 학습은 통계적 패턴인식에서의 ML 추정기법처럼 모델간의 독립성이 보장되고 무한한 양의 학습데이타가 주어진다는 가정에 기초하고 있다. 그러나, 대상어휘집합에 음운학적으로 유사한 어휘가 많이 포함되어 있는 인식문제에 있어서는 모델간의 독립성이 보장되지 못하고, 실제 주어지는 grktmqepdlk의 양도 제한되므로 기존의 합습알고리즘에는 한계가 있다. 따라서 본 논문에서는 그러한 가정상의 문제점으로 생기는 인식기의 성능저하를 개선할 수 있는 변별력 있는 학습알고리즘들을 검토하고 그의 일반적인 접근방법들에 대해서 논의한다.

  • PDF

Performance Improvement of Regression Neural Networks by Using PCA (PCA 기법에 의한 회귀분석 신경망의 성능개선)

  • 조용현;박용수
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.116-119
    • /
    • 2001
  • 본 논문에서는 주요성분분석 기법을 도입하여 회귀분석을 위한 신경망의 성능 개선방안을 제안하였다. 이는 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 주요성분분석 기법의 속성을 살려 학습데이터의 타원을 감소시킴으로서 고차원의 학습데이터에 따른 신경망의 학습성능 의존성을 줄이기 위함이다. 제안된 기법의 신경망을 10개의 독립변수 패턴을 가진 자동차 연비문제에 적용하여 시뮬레이션한 결과, 기존의 학습데이터를 그대로 이용하는 신경 망보다 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다.

  • PDF

Learning Control Based on CMAC Neural Networks (CMAC 신경회로망을 기반으로 한 학습제어)

  • Yoo, J.J.;Chung, T.J.;Choi, J.S.
    • Electronics and Telecommunications Trends
    • /
    • v.8 no.3
    • /
    • pp.11-20
    • /
    • 1993
  • CMAC 신경회로망은 다차원 비선형 함수를 학습을 통하여 발생되는 많고 복잡한 데이터들을 퍼셉트론과 같이 집합시켜 메모리를 구성하고 처리하는 분야이다. 일반적으로 학습알고리즘은 소수의 반복으로써 수렴한다. 본고에서는 CMAC의 메카니즘 및 CMAC의 특성을 기술하고, CMAC의 학습가능성을 예시하였다. CMAC의 학습성능을 시험하기 위해서 3관절 로봇의 squatting 문제에 적용하였다.

Text Filtering by Boosting Linear Perceptrons (선형 퍼셉트론의 부스팅 학습에 의한 텍스트 여과)

  • 오장민;장병탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.73-76
    • /
    • 2000
  • 문서 분류나 여과 문제에서 양의 학습 데이터의 부족은 성능 저하의 주요 원인이 된다. 이런 경우 여러 학습 알고리즘이 문제의 특성을 제대로 파악하지 못한다. 본 논문에서는 부스팅 기법을 도입하여 이 문제를 접근해 보았다. 부스팅 기법은 약한 능력을 보유한 학습 알고리즘을 부스팅 과정을 통해 궁극적으로 강력한 성능을 얻을 수 있게 해준다. 간단한 선형 퍼셉트론에 부스팅 기법을 도입하여 문서 여과에 적용하였다. 제안된 알고리즘을 Reuters-21578 문서 집합에 적용한 결과, 재현률 측면에서 다층 신경망보다 우수한 성능을 보였고 특히 양의 학습 데이터가 부족한 문제의 경우 탁월한 결과를 얻을 수 있었다.

  • PDF

그래프 마법사와 함수교육

  • Ryu, Jae-Gu
    • Communications of Mathematical Education
    • /
    • v.10
    • /
    • pp.519-528
    • /
    • 2000
  • 최근 10 여년 동안 교육 현장의 각 부분에 여러 가지 종류의 테크놀로지가 도입되면서, 교육의 내용과 방법에 있어서 점진적인 변화가 나타나고 있다. 예를들어, 수학 과목에 있어서는 그래픽 계산기, 도형 및 기하 학습 프로그램, 스프레드 시트, 함수 그래픽 프로그램 등의 도입으로 교과 과정 전반에 걸친 변화가 일고 있는데, 처음에는 이들 테크놀로지가 단순히 기존의 수업에서 수많은 반복을 요하거나, 지필식 방식으로는 정확하게 나타내기 어려운 도형이나 그래프를 빠르고 정확하게 그려내주는 보조수단으로 사용되었지만, 시간이 지나면서 이들 테크놀로지에 대한 활용도가 높아지게 되고, 이들 테크놀로지에 대한 교사들의 활용능력이 증대됨에 다라서, 이러한 테크놀로지가 단순한 보조수단에 머무르지 않고 주지에 기술이나 개념을 설명하는 방법 자체를 변화시키고 있다. 예를들어, 함수 교육에 있어서 그래픽 프로그램이 사용될 때에도, 초기 단계에서는 이들 함수의 개념을 설명할 때에는 거의 집합론이나 대수학적인 방법을 이용하였고, 최종 단계로 이들 함수를 좌표계 위에 표현하기 위한 보조수단으로 잠깐씩 사용되는 경우가 대부분이었으나, 최근들어서는 함수 학습의 초기과정부터 곧바로 이들 그래프 프로그램을 적극적으로 도입하여 학습자로 하여금 다양한 그래프 조작을 하게 함으로써, 어려운 집합론이나 대수학적인 개념을 도입하지 않고서도 함수에 대한 개념을 시각적으로 직관적으로 파악하도록 하는 학습 방안들이 제시되고 있는 것이다. 본 고에서는 현행 중고등학교 함수 교육 과정에서 그래프에 대한 다양한 조작 기능을 제공함으로써 학습자로 하여금, 제시되는 함수에 대한 시각적이고 직관적인 이미지를 가질 수 있도록 하기 위해서 개발된 ‘그래프 마법사’라는 프로그램을 소개하고자 한다.

  • PDF

Software Quality Classification Model using Virtual Training Data (가상 훈련 데이터를 사용하는 소프트웨어 품질 분류 모델)

  • Hong, Euy-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.7
    • /
    • pp.66-74
    • /
    • 2008
  • Criticality prediction models to identify most fault-prone modules in the system early in the software development process help in allocation of resources and foster software quality improvement. Many models for identifying fault-prone modules using design complexity metrics have been suggested, but most of them are training models that need training data set. Most organizations cannot use these models because very few organizations have their own training data. This paper builds a prediction model based on a well-known supervised learning model, error backpropagation neural net, using design metrics quantifying SDL system specifications. To solve the problem of other models, this model is trained by generated virtual training data set. Some simulation studies have been performed to investigate feasibility of this model, and the results show that suggested model can be an alternative for the organizations without real training data to predict their software qualities.

Neural Tree Classifier based on LVQ for Data Mining (데이터 마이닝을 위한 LVQ 기반 신경 트리 분류기)

  • 김세현;김은주;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.157-159
    • /
    • 2001
  • 신경 트리는 신경망과 결정 트리의 구조를 결합한 형태의 분류기로서 비선형적 결정 경계 형성이 가능하며 기존 신경망에 비해 학습, 출력시 계산량이 적다는 장점을 갖는다. 본 논문에서는 신경 트리의 노드를 구성하는 신경망을 학습하기 위하여 기존의 방법들과는 달리 교사 학습 방법인 LVQ3 알고리즘을 사용하는 신경 트리 분류기를 제안한다. 학습 과정을 통해 생성된 트리는 오인식율 추정을 이용한 가지치기를 통하여 효율적인 트리로 재구성된다. 제안하는 방법은 실제 데이터 집합들을 이용한 실험을 통하여 그 성능을 검증하였다.

  • PDF