본 연구에서는 HMM(Hidden Markov Model) 및 Levelbuilding 알고리즘을 이용하여 인식대상 음소열의 표본 집합(훈련패턴 집합)을 입력으로 하는 음성의 자동 분할 시스템을 구현하였다. 본 시스템은 자연스럽게 발음되어진 연결음 음성으로부터 표준 음소모델을 생성한다. 본 시스템의 구성은 초기화 과정, HMM학습과정 그리고 Levelbuilding을 이용한 분리 및 CLustering 과정으로 구성되어 있다. 초기화 과정에서는 제어 정보를 이용하여 훈련패턴 집합으로부터 초기 음소 집합 군을 생성한다. Levelbuilding을 이용한 분리 및 Clustering 단계에서는 음소 모델과 제어 정보를 이용하여 훈련패턴들을 음소 단위로 분리하고, 분리된 후보 음소들을 Clustering하여 음소집합 군을 생성한다. 음소모델의 구성에 변화가 없을 때까지 이 작업을 반복 수행하여 최적의 음소모델을 생성한다. 본 연구에서는 3개 이하의 숫자단어로 구성된 연결되어 음성 패턴을 대상으로 실험하였다. 연결단어에 대한 음소의 표준모델 생성과정에서 가장 중요한 처리인 훈련패턴의 자동분할 과정을 분석하기 위하여 각 반복과정에서 분리된 정보를 그래프로 도시화하여 확인하였다.
The Transactions of the Korea Information Processing Society
/
v.3
no.7
/
pp.1763-1772
/
1996
The conventional training set selection methods for the satellite image classification usually depend on the manual selection using data from the direct measurements of the ground or the ground map. However this task takes much time and cost, and some feature values vary in wide ranges even if they are in the same class. Such feature values can increase the robustness of the neural net but learning time becomes longer. In this paper,we propose anew training set selection algorithm using a rule-based method. By the technique proposed, the SPOT multispectral Imagery is classified in 3 bands, and the pixels which satisfy the rule are employed as the training sets for the neutralist classifier. The experimental results show faster initial convergence and almost the same or better classification accuracy. We also showed an improvement of the classification accuracy by using texture features and NDV1.
The open set recognition method should be used for the cases that the classes of test data are not known completely in the training phase. So it is required to include two processes of classification and the validation test. This kind of research is very necessary for commercialization of face recognition modules, but few domestic researches results about it have been published. In this paper, we propose an open set face recognition method that includes two sequential validation phases. In the first phase, with dummy classes we perform classification based on sparse representation. Here, when the test data is classified into a dummy class, we conclude that the data is invalid. If the data is classified into one of the regular training classes, for second validation test we extract four features and apply them for the proposed decision function. In experiments, we proposed a simulation method for open set recognition and showed that the proposed validation test outperform SCI of the well-known validation method
Proceedings of the Acoustical Society of Korea Conference
/
1994.06c
/
pp.166-171
/
1994
기존의 음성인식기들은 일반적으로 간단하면서도 성능이 우수한 계층별 학습에 의해서 설계된다. 계층별 학습은 통계적 패턴인식에서의 ML 추정기법처럼 모델간의 독립성이 보장되고 무한한 양의 학습데이타가 주어진다는 가정에 기초하고 있다. 그러나, 대상어휘집합에 음운학적으로 유사한 어휘가 많이 포함되어 있는 인식문제에 있어서는 모델간의 독립성이 보장되지 못하고, 실제 주어지는 grktmqepdlk의 양도 제한되므로 기존의 합습알고리즘에는 한계가 있다. 따라서 본 논문에서는 그러한 가정상의 문제점으로 생기는 인식기의 성능저하를 개선할 수 있는 변별력 있는 학습알고리즘들을 검토하고 그의 일반적인 접근방법들에 대해서 논의한다.
Proceedings of the Korea Multimedia Society Conference
/
2001.06a
/
pp.116-119
/
2001
본 논문에서는 주요성분분석 기법을 도입하여 회귀분석을 위한 신경망의 성능 개선방안을 제안하였다. 이는 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 주요성분분석 기법의 속성을 살려 학습데이터의 타원을 감소시킴으로서 고차원의 학습데이터에 따른 신경망의 학습성능 의존성을 줄이기 위함이다. 제안된 기법의 신경망을 10개의 독립변수 패턴을 가진 자동차 연비문제에 적용하여 시뮬레이션한 결과, 기존의 학습데이터를 그대로 이용하는 신경 망보다 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다.
CMAC 신경회로망은 다차원 비선형 함수를 학습을 통하여 발생되는 많고 복잡한 데이터들을 퍼셉트론과 같이 집합시켜 메모리를 구성하고 처리하는 분야이다. 일반적으로 학습알고리즘은 소수의 반복으로써 수렴한다. 본고에서는 CMAC의 메카니즘 및 CMAC의 특성을 기술하고, CMAC의 학습가능성을 예시하였다. CMAC의 학습성능을 시험하기 위해서 3관절 로봇의 squatting 문제에 적용하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.05a
/
pp.73-76
/
2000
문서 분류나 여과 문제에서 양의 학습 데이터의 부족은 성능 저하의 주요 원인이 된다. 이런 경우 여러 학습 알고리즘이 문제의 특성을 제대로 파악하지 못한다. 본 논문에서는 부스팅 기법을 도입하여 이 문제를 접근해 보았다. 부스팅 기법은 약한 능력을 보유한 학습 알고리즘을 부스팅 과정을 통해 궁극적으로 강력한 성능을 얻을 수 있게 해준다. 간단한 선형 퍼셉트론에 부스팅 기법을 도입하여 문서 여과에 적용하였다. 제안된 알고리즘을 Reuters-21578 문서 집합에 적용한 결과, 재현률 측면에서 다층 신경망보다 우수한 성능을 보였고 특히 양의 학습 데이터가 부족한 문제의 경우 탁월한 결과를 얻을 수 있었다.
최근 10 여년 동안 교육 현장의 각 부분에 여러 가지 종류의 테크놀로지가 도입되면서, 교육의 내용과 방법에 있어서 점진적인 변화가 나타나고 있다. 예를들어, 수학 과목에 있어서는 그래픽 계산기, 도형 및 기하 학습 프로그램, 스프레드 시트, 함수 그래픽 프로그램 등의 도입으로 교과 과정 전반에 걸친 변화가 일고 있는데, 처음에는 이들 테크놀로지가 단순히 기존의 수업에서 수많은 반복을 요하거나, 지필식 방식으로는 정확하게 나타내기 어려운 도형이나 그래프를 빠르고 정확하게 그려내주는 보조수단으로 사용되었지만, 시간이 지나면서 이들 테크놀로지에 대한 활용도가 높아지게 되고, 이들 테크놀로지에 대한 교사들의 활용능력이 증대됨에 다라서, 이러한 테크놀로지가 단순한 보조수단에 머무르지 않고 주지에 기술이나 개념을 설명하는 방법 자체를 변화시키고 있다. 예를들어, 함수 교육에 있어서 그래픽 프로그램이 사용될 때에도, 초기 단계에서는 이들 함수의 개념을 설명할 때에는 거의 집합론이나 대수학적인 방법을 이용하였고, 최종 단계로 이들 함수를 좌표계 위에 표현하기 위한 보조수단으로 잠깐씩 사용되는 경우가 대부분이었으나, 최근들어서는 함수 학습의 초기과정부터 곧바로 이들 그래프 프로그램을 적극적으로 도입하여 학습자로 하여금 다양한 그래프 조작을 하게 함으로써, 어려운 집합론이나 대수학적인 개념을 도입하지 않고서도 함수에 대한 개념을 시각적으로 직관적으로 파악하도록 하는 학습 방안들이 제시되고 있는 것이다. 본 고에서는 현행 중고등학교 함수 교육 과정에서 그래프에 대한 다양한 조작 기능을 제공함으로써 학습자로 하여금, 제시되는 함수에 대한 시각적이고 직관적인 이미지를 가질 수 있도록 하기 위해서 개발된 ‘그래프 마법사’라는 프로그램을 소개하고자 한다.
Criticality prediction models to identify most fault-prone modules in the system early in the software development process help in allocation of resources and foster software quality improvement. Many models for identifying fault-prone modules using design complexity metrics have been suggested, but most of them are training models that need training data set. Most organizations cannot use these models because very few organizations have their own training data. This paper builds a prediction model based on a well-known supervised learning model, error backpropagation neural net, using design metrics quantifying SDL system specifications. To solve the problem of other models, this model is trained by generated virtual training data set. Some simulation studies have been performed to investigate feasibility of this model, and the results show that suggested model can be an alternative for the organizations without real training data to predict their software qualities.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.157-159
/
2001
신경 트리는 신경망과 결정 트리의 구조를 결합한 형태의 분류기로서 비선형적 결정 경계 형성이 가능하며 기존 신경망에 비해 학습, 출력시 계산량이 적다는 장점을 갖는다. 본 논문에서는 신경 트리의 노드를 구성하는 신경망을 학습하기 위하여 기존의 방법들과는 달리 교사 학습 방법인 LVQ3 알고리즘을 사용하는 신경 트리 분류기를 제안한다. 학습 과정을 통해 생성된 트리는 오인식율 추정을 이용한 가지치기를 통하여 효율적인 트리로 재구성된다. 제안하는 방법은 실제 데이터 집합들을 이용한 실험을 통하여 그 성능을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.