Text Filtering by Boosting Linear Perceptrons

선형 퍼셉트론의 부스팅 학습에 의한 텍스트 여과

  • 오장민 (서울대학교 컴퓨터 공학부) ;
  • 장병탁 (서울대학교 컴퓨터 공학부)
  • Published : 2000.05.01

Abstract

문서 분류나 여과 문제에서 양의 학습 데이터의 부족은 성능 저하의 주요 원인이 된다. 이런 경우 여러 학습 알고리즘이 문제의 특성을 제대로 파악하지 못한다. 본 논문에서는 부스팅 기법을 도입하여 이 문제를 접근해 보았다. 부스팅 기법은 약한 능력을 보유한 학습 알고리즘을 부스팅 과정을 통해 궁극적으로 강력한 성능을 얻을 수 있게 해준다. 간단한 선형 퍼셉트론에 부스팅 기법을 도입하여 문서 여과에 적용하였다. 제안된 알고리즘을 Reuters-21578 문서 집합에 적용한 결과, 재현률 측면에서 다층 신경망보다 우수한 성능을 보였고 특히 양의 학습 데이터가 부족한 문제의 경우 탁월한 결과를 얻을 수 있었다.

Keywords