Proceedings of the Korean Institute of Intelligent Systems Conference (한국지능시스템학회:학술대회논문집)
- 2000.05a
- /
- Pages.73-76
- /
- 2000
Text Filtering by Boosting Linear Perceptrons
선형 퍼셉트론의 부스팅 학습에 의한 텍스트 여과
Abstract
문서 분류나 여과 문제에서 양의 학습 데이터의 부족은 성능 저하의 주요 원인이 된다. 이런 경우 여러 학습 알고리즘이 문제의 특성을 제대로 파악하지 못한다. 본 논문에서는 부스팅 기법을 도입하여 이 문제를 접근해 보았다. 부스팅 기법은 약한 능력을 보유한 학습 알고리즘을 부스팅 과정을 통해 궁극적으로 강력한 성능을 얻을 수 있게 해준다. 간단한 선형 퍼셉트론에 부스팅 기법을 도입하여 문서 여과에 적용하였다. 제안된 알고리즘을 Reuters-21578 문서 집합에 적용한 결과, 재현률 측면에서 다층 신경망보다 우수한 성능을 보였고 특히 양의 학습 데이터가 부족한 문제의 경우 탁월한 결과를 얻을 수 있었다.
Keywords