As technology advances, the need for enhanced preparedness against cyber-attacks becomes an increasingly critical problem. Therefore, it is imperative to consider various circumstances and to prepare for cyber-attack strategic technology. This paper proposes a method to solve network security problems by applying reinforcement learning to cyber-security. In general, traditional static cyber-security methods have difficulty effectively responding to modern dynamic attack patterns. To address this, we implement cyber-attack scenarios such as 'Tiny Alpha' and 'Small Alpha' and evaluate the performance of various reinforcement learning methods using Network Attack Simulator, which is a cyber-attack simulation environment based on the gymnasium (formerly Open AI gym) interface. In addition, we experimented with different RL algorithms such as value-based methods (Q-Learning, Deep-Q-Network, and Double Deep-Q-Network) and policy-based methods (Actor-Critic). As a result, we observed that value-based methods with discrete action spaces consistently outperformed policy-based methods with continuous action spaces, demonstrating a performance difference ranging from a minimum of 20.9% to a maximum of 53.2%. This result shows that the scheme not only suggests opportunities for enhancing cybersecurity strategies, but also indicates potential applications in cyber-security education and system validation across a large number of domains such as military, government, and corporate sectors.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.2
/
pp.389-396
/
2024
Generative AI has recently been utilized across all fields, achieving expert-level advancements in deep data analysis. However, identifying regional names in scientific literature remains a challenge due to insufficient training data and limited AI application. This study developed a standardized dataset for effectively classifying regional names using address data from Korean institution-affiliated authors listed in the Web of Science. It tested and evaluated the applicability of machine learning and deep learning models in real-world problems. The BERT model showed superior performance, with a precision of 98.41%, recall of 98.2%, and F1 score of 98.31% for metropolitan areas, and a precision of 91.79%, recall of 88.32%, and F1 score of 89.54% for city classifications. These findings offer a valuable data foundation for future research on regional R&D status, researcher mobility, collaboration status, and so on.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.2
/
pp.397-402
/
2024
Speech recognition and motion recognition technologies are applied and used in various smart devices, but they are composed of simple command recognition forms and are used as simple functions. Apart from simple functions for recognition data, professional command execution capabilities are required based on data learned in various fields. Research is being conducted on a system platform that provides optimal data to users using Generative AI, which is currently competing around the world, and can interact through voice recognition and motion recognition. The main technical processes designed for this study were designed using technologies such as voice and motion recognition functions, application of AI technology, and two-way communication. In this paper, two-way communication between a device and a user can be achieved by various input methods through voice recognition and motion recognition technology applied with AI technology.
Journal of Korea Society of Industrial Information Systems
/
v.29
no.3
/
pp.13-22
/
2024
Currently, with the proliferation of digital devices, the significance of handwritten texts in daily lives is gradually diminishing. As the use of keyboards and touch screens increase, a decline in Korean handwriting quality is being observed across a broad spectrum of Korean documents, from young students to adults. However, Korean handwriting still remains necessary for many documentations, as it retains individual unique features while ensuring readability. To this end, this paper aims to implement an application designed to improve and correct the quality of handwritten Korean script The implemented application utilizes the CRAFT (Character-Region Awareness For Text Detection) model for handwriting area detection and employs the VGG-Feature-Extraction as a deep learning model for learning features of the handwritten script. Simultaneously, the application presents the user's handwritten Korean script's reliability on a syllable-by-syllable basis as a recognition rate and also suggests the most similar fonts among candidate fonts. Furthermore, through various experiments, it can be confirmed that the proposed application provides an excellent recognition rate comparable to conventional commercial character recognition OCR systems.
In addressing the prominent issues of climate change, resource scarcity, and environmental pollution associated with household waste, extensive research has been conducted on intelligent waste classification methods. These efforts range from traditional classification algorithms to machine learning and neural networks. However, challenges persist in effectively classifying waste in diverse environments and conditions due to insufficient datasets, increased complexity in neural network architectures, and performance limitations for real-world applications. Therefore, this paper proposes i-YOLOX as a solution for rapid classification and improved accuracy. The proposed model is evaluated based on network parameters, detection speed, and accuracy. To achieve this, a dataset comprising 10,000 samples of household waste, spanning 17 waste categories, is created. The i-YOLOX architecture is constructed by introducing the Involution channel convolution operator and the Convolution Branch Attention Module (CBAM) into the YOLOX structure. A comparative analysis is conducted with the performance of the existing YOLO architecture. Experimental results demonstrate that i-YOLOX enhances the detection speed and accuracy of waste objects in complex scenes compared to conventional neural networks. This confirms the effectiveness of the proposed i-YOLOX architecture in the detection and classification of multiple household waste objects.
Jung-Hwan Kim;Young-beom Ko;Jihoon Choi;Hanjin Lee
Journal of the Korea Society of Computer and Information
/
v.29
no.2
/
pp.21-30
/
2024
This research aims to design a system capable of generating real web pages based on deep learning and big data, in three stages. First, a classification system was established based on the industry type and functionality of e-commerce websites. Second, the types of components of web pages were systematically categorized. Third, the entire web page auto-generation system, applicable for deep learning, was designed. By re-engineering the deep learning model, which was trained with actual industrial data, to analyze and automatically generate existing websites, a directly usable solution for the field was proposed. This research is expected to contribute technically and policy-wise to the field of generative AI-based complete website creation and industrial sectors.
A neural network is utilized for preprocessing of de-noizing in electrocardiogram signals, retinal images, seismic waves, etc. However, the de-noizing process could provoke increase of computational time and distortion of the original signals. In this study, we investigated a neural network architecture to analyze measurement data without additional de-noizing process. From the dynamical behaviors of DNA in aqueous solution, our neural network model aimed to predict the mole fraction of each DNA in the solution. By adding white noise to the dynamics data of DNA artificially, we investigated the effect of the noise to neural network's predictions. As a result, our model was able to predict the DNA mole fraction with an error of O(0.01) when signal-to-noise ratio was O(1). This work can be applied as a efficient artificial intelligence methodology for analyzing DNA related to genetic disease or cancer cells which would be sensitive to background measuring noise.
Hee Jun Lee;Won Seok Lee;In Hyeok Choi;Choong Kwon Lee
Information Systems Review
/
v.22
no.1
/
pp.113-124
/
2020
In the operation of farms, it is very important to evaluate the quality of harvested crops and to classify defective products. However, farmers have difficulty coping with the cost and time required for quality assessment due to insufficient capital and manpower. This study thus aims to detect defects by analyzing the epidermis of fruit using deep learning algorithm. We developed a model that can analyze the epidermis by applying YOLOv3 algorithm based on Region Convolutional Neural Network to video images of peach. A total of four classes were selected and trained. Through 97,600 epochs, a high performance detection model was obtained. The crop failure detection model proposed in this study can be used to automate the process of data collection, quality evaluation through analyzed data, and defect detection. In particular, we have developed an analytical model for peach, which is the most vulnerable to external wounds among crops, so it is expected to be applicable to other crops in farming.
If the future can be predicted from network traffic data, which is a time series, it can achieve effects such as efficient resource allocation, prevention of malicious attacks, and energy saving. Many models based on statistical and deep learning techniques have been proposed, and most of these studies have focused on improving model structures and learning algorithms. Another approach to improving the prediction performance of the model is to obtain a good-quality data. With the aim of obtaining a good-quality data, this paper applies a dense sampling technique that augments time series data to the application of network traffic prediction and analyzes the performance improvement. As a dataset, UNSW-NB15, which is widely used for network traffic analysis, is used. Performance is analyzed using RMSE, MAE, and MAPE. To increase the objectivity of performance measurement, experiment is performed independently 10 times and the performance of existing sparse sampling and dense sampling is compared as a box plot. As a result of comparing the performance by changing the window size and the horizon factor, dense sampling consistently showed a better performance.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.3
/
pp.539-544
/
2024
This paper examines the necessity and direction of digital literacy education as university education in the AI era. Digital literacy can be considered universal education about everyday culture in a digital environment, and its scope is expanding to cultivate the competencies necessary for citizens of a digital society, rather than simply the ability to use digital devices. In this paper, the university liberal arts curriculum has strengthened the information literacy area to reflect the changes of the times, but it is presented as a problem that it is still focused on the technical aspects of learning how to use digital devices and specific programs. It was suggested that the direction of digital literacy education in universities should not be limited to the technical and instrumental aspects of using digital devices, but that it would be desirable to focus on digital ethics considering the social impacts that may arise from the use of digital devices.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.