• 제목/요약/키워드: 학습열의

검색결과 691건 처리시간 0.029초

최대 엔트로피 모델을 이용한 한국어 명사구 추출 (Korean Noun Phrase Identification Using Maximum Entropy Method)

  • 강인호;전수영;김길창
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2000년도 한글 및 한국어 정보처리
    • /
    • pp.127-132
    • /
    • 2000
  • 본 논문에서는 격조사의 구문적인 특성을 이용하여, 수식어까지 포함한 명사구 추출 방법을 연구한다. 명사구 판정을 위해 연속적인 형태소열을 문맥정보로 사용하던 기존의 방법과 달리, 명사구의 처음과 끝 그리고 명사구 주변의 형태소를 이용하여 명사구의 수식 부분과 중심 명사를 문맥정보로 사용한다. 다양한 형태의 문맥 정보들은 최대 엔트로피 원리(Maximum Entropy Principle)에 의해 하나의 확률 분포로 결합된다. 본 논문에서 제안하는 명사구 추출 방법은 먼저 구문 트리 태깅된 코퍼스에서 품사열로 표현되는 명사구 문법 규칙을 얻어낸다. 이렇게 얻어낸 명사구 규칙을 이용하여 격조사와 인접한 명사구 후보들을 추출한다. 추출된 각 명사구 후보는 학습 코퍼스에서 얻어낸 확률 분포에 기반하여 명사구로 해석될 확률값을 부여받는다. 이 중 제일 확률값이 높은 것을 선택하는 형태로 각 격조사와 관계있는 명사구를 추출한다. 본 연구에서 제시하는 모델로 시험을 한 결과 평균 4.5개의 구를 포함하는 명사구를 추출할 수 있었다.

  • PDF

사용자 청취 로그의 음악 청취 순서를 이용한 다음 음악 추천 (The Next Song Recommendation Using Item Sequences in Music Usage Data)

  • 박성은;이동주;이상근;이상구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.41-44
    • /
    • 2011
  • 본 연구는 현재 사용자가 청취한 음악과 청취한 순서를 기반으로 다음에 사용할 아이템을 추천하는 문제를 다룬다. 우리가 제시하는 모델은 아이템 사용 로그를 기반으로 하며, 정보검색에서 많이 사용하는 N-gram모델을 사용하여 아이템의 순서열을 추출한 후 다음에 올 확률이 높은 아이템을 학습한다. 그리고 사용자가 현재 선택한 아이템의 순서열을 기반으로 다음에 가장 들을 확률이 높은 아이템을 추천한다. 또 실 세계 데이터를 기반으로 실험하여 협업적 필터링 방식과 성능을 비교한다.

정량적인 월강수량 예측에 관한 연구 (A Study of Quantitative Monthly Precipitation Forecast)

  • 신주영;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1625-1629
    • /
    • 2010
  • 효율적인 장기 수자원 운영을 위하여 미래의 강수량을 예측하는 것은 중요하다. 특히 월 또는 계절단위의 강수량의 정량적인 예측이 필요하다. 우리나라에서는 기상청에서 향후 3개월의 강수량과 온도에 대하여 정성적으로 예측을 하고 있다. 정성적인 예측은 적음과 많음만을 나타내어 정보를 활용하기에 많은 제약이 있다. 기상수치모형을 통한 예측의 경우 월간과 같은 시간스케일에서 정량적인 예측이 가능하나 예측 정확도가 떨어지는 문제로 인하여, 일반적으로 정성적인 예측을 하고 있다. 이런 문제점을 극복하고자 본 연구에서는 기상수치모형을 이용하지 않고 시계열 모형을 이용하여 월강수량을 예측하고자 한다. 기존의 통계학에서 사용되는 시계열 모형과 자기학습모형 등을 이용하여 정량적인 월 강수량을 예측하는 다양한 모형을 구성하고, 각 모형의 적용성을 평가하고자 한다.

  • PDF

언어 압축 알고리즘을 이용한 컴퓨터 바이러스의 행위 패턴 추출 (Extraction of Computer Virus Behavior by Using Language Compression Algorithm)

  • 임영환;위규범
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (A)
    • /
    • pp.754-756
    • /
    • 2001
  • 컴퓨터 사용증가와 함께 컴퓨터 바이러스 또한 증가하고 있다. 바이러스 검사 프로그램은 바이러스의 특정 문자열(signature)을 찾아 문자열 검색도구와 프로세스의 행동을 모니터링 하는 감시도구(general purpose monitor)의 두 가지 형태가 있으며, 각각은 미 발견 바이러스에 대한 취약성과 시스템 오버헤드를 단점으로 가지고 있다. 또한, 최근에 제안된 면역 시스템은 계산 복잡도나 시스템 구성면에서 지나친 부담을 가지고 있다. 본 논문에서는 바이러스들의 행위를 추출 할 수 있도록 하기 위하여, 언어 압축 알고리즘을 이용하여 바이러스 행동 패턴을 추출하는 방법을 고안하였고, 몇 가지 바이러스를 이용하여 실험해 보았다. 그 결과 실제 학습에 이용한 바이러스가 아니더라도 유사한 동작을 하는 바이러스에 대해서는 면역성을 가질 수 있었다.

  • PDF

자율조직 CMAC 신경망에 의한 비선형 시계열 예측 (Prediction of Nonlinear Sequences by Self-Organized CMAC Neural Network)

  • 이태호
    • 융합신호처리학회논문지
    • /
    • 제3권4호
    • /
    • pp.62-66
    • /
    • 2002
  • SOCMAC 신경망에 의하여 Mackey-Glass의 비선형 시계열 예측을 시도하였다 다차원 연속 입력 변수를 가지는 문제는 요구되는 기억용량의 규모가 너무 커서 CMAC에서는 일반적으로 취급이 곤난한 대상이었으나 SOCMAC에서는 이것이 가능함을 보였다. 또한 학습과정에서 수용영역(receptive field)을 가변으로 하는 개선된 방법을 제시하였다. 예측오차는 TDNN(time-delayed neural network)이나 BP(back-propagation) 수준이었다.

  • PDF

뉴스 텍스트 마이닝과 시계열 분석을 이용한 주가예측 (Stock Prediction Using News Text Mining and Time Series Analysis)

  • 안성원;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.364-369
    • /
    • 2010
  • 본 논문에서는 뉴스 텍스트 마이닝을 수행하여 2005년 1월부터 2008년 12월까지 4년 간의 뉴스 데이터에 대해 주가에 호재인지 악재인지 여부에 대해 학습을 하고, 이를 근거로 신규 발행된 뉴스가 주가 상승 또는 하락에 영향을 미치는지를 예측하는 알고리즘을 제안한다. 뉴스 텍스트 마이닝을 위해 변형된 Bag of Words 모델과 Naive Bayesian 분류기법을 사용하였으며, 특히 주가 예측에 있어서 뉴스 마이닝에만 의존하던 기존의 관련 연구와는 달리 예측의 정확성을 높이기 위해 주가의 시계열 데이터 분석기법인 RSI를 추가로 작용하였다. 2009년 11월부터 2010년 2월까지 4개월간 42,355건의 뉴스 데이터에 대해 실험한 결과, 기존 연구 대비 의미 있는 결과인 55.01%의 예측성공률을 얻었다.

  • PDF

LNG 운송시장의 스팟운임 예측 연구 (Forecasting Spot Freight Rate in LNG Market)

  • 임상섭;김석훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.325-326
    • /
    • 2021
  • LNG는 환경규제에 따라 화석에너지에서 친환경 재생에너지로 전환되는데 중요한 역할을 하는 에너지원이다. UN산하 세계해사기구(IMO)의 MARPOL협약에 따라 선박 황산화물 배출가스규제로 LNG추진 선박에 대한 수요가 증가되고 있을 뿐만 아니라 미국의 쉐일혁명으로 LNG를 수출함에 따라 공급의 변화가 급격하게 이뤄지고 있다. 과거 국가 주도의 프로젝트 성격이 강한 LNG 운송시장은 장기정기용선계약이 대부분이었으나 수요와 공급시장의 급격한 변화로 스팟시장의 중요성이 커지고 있다. 따라서 본 논문은 LNG 운송시장에서 시장참여자들의 스팟거래에 합리적인 의사결정이 이뤄지도록 과학적인 예측방법을 제시하고자 한다. LNG 스팟운임 예측에 기계학습모델 중 인공신경망 모델을 적용할 것이며 기존의 시계열분석 방법인 ARIMA모델과 비교하여 본문에서 제시된 모델의 예측성능의 우수성을 확인하였다. 본 논문은 LNG 스팟운임을 다룬 최초의 연구로서 학문적인 차별성이 기대된다.

  • PDF

AI 기반환경의 주식 시세예측을 위한 성능 비교분석 시스템 (The Performance Comparative Analysis System for Stock Price Forecasting on AI Environment)

  • 이철현;오염덕
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.127-128
    • /
    • 2022
  • 최근 많은 증권사 및 다양한 금융사기업에서 투자자의 주식투자를 돕는 투자자문 인공지능, 로보어드바이저를 제안하고 활용한다. 본 논문에서는 증권사 등에서 사용되고 있는 주식 시세예측 알고리즘의 성능을 상호 비교분석한다. 주식 시계열 데이터 예측에 용이한 4가지의 인공지능 알고리즘인 LSTM, GRU, 딥Q 네트워크강화학습, XGBoost 알고리즘의 성능을 분석하고 비교하는 시스템을 구현하였다. 본 연구에서는 구현된 성능 분석 시스템을 통해 어떤 알고리즘이 주식 시세를 예측하고 활용하기 위해 가장 좋은 성능을 가졌는지 비교분석하고 해당 시스템의 결과분석이 주식예측에 어떠한 영향을 주는지를 평가한다.

  • PDF

센서 데이터 합성을 통한 반려동물 행동 감지 (Pet Behavior Detection through Sensor Data Synthesis)

  • 김형주;박찬;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.606-608
    • /
    • 2022
  • 센서 데이터를 활용한 행동 감지 연구는 인간 행동 인식을 선행연구로 진행되었으며, 인식의 정확도를 높이기 위해 전처리, 보간, 증강 등을 통한 연구가 활발히 진행되고 있다. 이에 본 논문에서는 시계열 센서 데이터 증강을 통하여 반려동물의 행동 감지를 제안한다. ODROID 단일 보드 컴퓨터와 6축 센서(가속도, 자이로) 데이터를 탑재한 소형 디바이스를 사용하여 블루투스 통신을 통해 웹 서버 DB에 저장한다. 저장된 데이터는 이상치, 결측치 처리 후 정규화를 통해 시퀀스를 구성하는 전처리 과정을 거친다. 이후 GAN을 기반으로 한 시계열 데이터 증강을 진행한다. 이때, 데이터 증강은 입력된 텍스트에 따라 센서 데이터로 변환하여 데이터를 증강한다. 학습된 딥러닝 모델을 바탕으로 행동을 감지 후 평가 지표에 따라 모델 성능을 검증한다.

CNN-LSTM 기반 시계열 센서 데이터를 이용한 노인 활동 인식 시스템 (Senior Activity Recognition System using Time-series sensor data based on CNN-LSTM)

  • 이선민;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.1230-1233
    • /
    • 2023
  • 최근, 65세 이상의 1인 가구가 급증함에 따라 노인을 대상으로 한 다양한 연구 및 서비스가 활발히 이루어지고 있다. 이에 본 논문에서는 시계열 센서 데이터를 이용하여 CNN-LSTM 기반의 노인 활동 인식 시스템을 제안한다. 수집된 데이터는 3축 가속도 센서가 내장된 2개의 디바이스를 등과 허벅지에 부착하였다. 수집 주기는 50hz로 진행되었으며, 각 행동은 2초를 기준으로 산정하였다. 학습데이터의 입력값으로 사용하기 위해, 슬라이딩 윈도우를 50%로 적용하여 시퀀스를 구성하였다. 모델은 특징을 반영하기 위한 CNN(Convolutional Neural Networks)과 시계열적 특성을 반영하기 위한 LSTM(Long-Short Term Memory)을 하이브리드한 1차원 형태의 CNN-LSTM 모델을 사용한다. 행동은 4가지로 분류하였으며, 97%의 정확도를 나타내고 있다.