Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1A2C1101867).
최근 많은 증권사 및 다양한 금융사기업에서 투자자의 주식투자를 돕는 투자자문 인공지능, 로보어드바이저를 제안하고 활용한다. 본 논문에서는 증권사 등에서 사용되고 있는 주식 시세예측 알고리즘의 성능을 상호 비교분석한다. 주식 시계열 데이터 예측에 용이한 4가지의 인공지능 알고리즘인 LSTM, GRU, 딥Q 네트워크강화학습, XGBoost 알고리즘의 성능을 분석하고 비교하는 시스템을 구현하였다. 본 연구에서는 구현된 성능 분석 시스템을 통해 어떤 알고리즘이 주식 시세를 예측하고 활용하기 위해 가장 좋은 성능을 가졌는지 비교분석하고 해당 시스템의 결과분석이 주식예측에 어떠한 영향을 주는지를 평가한다.
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1A2C1101867).