• Title/Summary/Keyword: 하중저항계수설계

Search Result 139, Processing Time 0.019 seconds

Load & Resistance Factors Calibration for Front Covered Caisson Breakwater (소파블록 피복제 제체의 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn;Huh, Jungwon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.293-297
    • /
    • 2021
  • Calibration of load-resistance factors for the limit state design of front covered caisson breakwaters were presented. Reliability analysis of the breakwaters which are constructed in Korean coast was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, load-resistance factors were compared with foreign country's code for verification.

Load & Resistance Factors Calibration for Sliding and Overturning Limit State Design of Perforated Caisson Breakwater (유공케이슨 방파제 활동 및 전도 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.458-464
    • /
    • 2020
  • Calibration of load-resistance factors for the limit state design of perforated caisson breakwaters are presented. Reliability analysis of 12 breakwaters in nationwide ports was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, some load-resistance factors were proposed by changing target reliability index.

Load & Resistance Factors Calibration for Limit State Design of Non-Perforated Caisson Breakwater (직립무공케이슨방파제 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.351-355
    • /
    • 2019
  • Load resistance factors for the limit state design of vertical caisson breakwaters are presented. Reliability analysis of 16 breakwaters in nationwide ports was conducted to calculate the partial safety factors and they were converted into load and resistance factors. The final load resistance factor was calibrated by applying the optimization technique to the individually calculated load resistance factors. Finally, the breakwater was redesigned using the optimal load resistance factor and verified whether the target level was met. The load resistance factor according to the change of the target reliability level is presented to facilitate the limit state design of breakwater.

Calibration of Load and Resistance Factors in KCI Code Based on Domestic Data (국내 통계자료를 이용한 설계기준의 하중저항계수 검증)

  • Kim, Jee-Sang;Kim, Jong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.495-501
    • /
    • 2011
  • The load combinations in current KCI Design Code are determined with reference to those in ACI 318-05, which adopts the LRFD (load and resistance factor design) format. The load and resistance factors in LRFD format should be determined to meet the required levels of reliability index or probability of failure for various predetermined failure modes, which are also based on the statistical data reflecting locality and contemporary situation. However, the current KCI Design Code has been written utilizing foreign data, because of insufficiency in accrued data in Korea. This study considered the current safety levels of KCI Code based on published domestic data to evaluate appropriateness of the current KCI regulations. Based on the calibrated reliability index of the existing Code, the new resistance factors are suggested. The results presented in this paper can be considered as a basic research for establishment of unique design format for future Korean Codes.

Analysis of LRFD Resistance Factor for Shallow Foundation on Weathered Soil Ground (풍화토지반 얕은기초에 대한 LRFD 저항계수 분석)

  • Kim, Donggun;Kim, Huntae;Suh, Jeeweon;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.5-11
    • /
    • 2015
  • Recently the necessity of developing the Load and Resistance Factor Design (LRFD) for shallow foundation has been raised to implement to the domestic design codes related to geotechnical engineering since the limit state design is requested as international technical standard for the foundation of structures. In this study, applicability of LRFD for shallow foundation on weathered soils was investigated and resistance factor for this case was proposed. The quantitative analyses on the uncertainty and resistance bias for shallow foundation on weathered soil ground were performed by collecting the statistical data about domestic case studies for design and construction of shallow foundation. Reliability analyses for shallow foundation were first performed using FDA (First-order Design value Approach) method. Resistance factors were calibrated using the load factors obtained from the specifications of shallow foundations on weathered soil ground. The influence of the load factors developed in this study on the resistance factors were discussed by comparing with the resistance factor obtained from using AASHTO load factors.

Resistance Factor Calculation of Driven Piles of Long Span Bridges (장대교량 타입말뚝에 대한 저항계수 산정)

  • Kim, Dong-Wook;Park, Jae-Hyun;Lee, Joon-Yong;Kwak, Ki-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.57-65
    • /
    • 2013
  • Assessment of uncertainties of loads and resistances is prerequisite for the development of load and resistance factor design (LRFD). Many previous studies related to resistance factor calculations of piles were conducted for short or medium span bridges (span lengths less than 200m) reflecting the live load uncertainty for ordinary span bridges. In this study, by using a revised live load model and its uncertainty for long span bridges (span lengths longer than 200m and shorter than 1500m), resistance factors are recalibrated. For the estimation of nominal pile capacity (both base and shaft capacities), the Imperial College Pile (ICP) design method is used. For clayey and sandy foundation, uncertainty of resistance is assessed based on the ICP database. As long span bridges are typically considered as more important structures than short or medium span bridges, higher target reliability indices are assigned in the reliability analysis. Finally, resistance factors are calculated and proposed for the use of LRFD of driven piles for ordinary span and long span bridges.

Evaluation of Reliability Index of Governing Load Combination for Design of Cable Supported Bridge Members (케이블교량의 부재 설계를 지배하는 하중조합에 대한 신뢰도지수 평가)

  • Paik, Inyeol;Yoon, Taeyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.643-651
    • /
    • 2014
  • In this paper the reliability analyses of the cable-supported bridge design code which is recently issued in Korea are performed and the results are presented. Governing load combinations for the member design and the statistical properties of the main members are introduced and the analysis is performed using an example cable-stayed bridge for which the design is performed following the load and resistance factors defined in the design code. The reliability analysis shows the target reliability index can be achieved by applying load and resistance factors and the application of the resistance modification factor can enhance the reliability level if the importance of the bridge needs to be increased. The sensitivity analysis reveals that decreasing uncertainty of the cable strength is critical for obtaining the target reliability index. The study results show that the design using the load and resistance factors of the code can achieve the target reliability indexes for the design of cable supported bridge.

Reliability Analysis of Composite Girder Designed by LRFD Method for Positive Flexure (하중저항계수설계법(LRFD)으로 설계된 강합성 거더의 휨에 대한 신뢰도해석)

  • Shin, Dong-Ku;Kim, Cheon-Yong;Paik, In-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.539-546
    • /
    • 2006
  • The reliability analysis of simply-supported composite plate girder and box girder bridges under positive flexure is performed. The bridges are designed based on the AASHTO-LRFD specification. A performance function for flexural failure is expressed as a function of such random variables as flexural resistance of composite section and design moments due to permanent load and live load. For the flexural resistance, the statistical parameters obtained by analyzing over 16,000 samples of domestic structural steel products are used. Several different values of statistical parameters with the bias factor in the range of 0.95-1.05 and the coefficient of variation in the range of 0.15-0.25 are used for the live-load moment. Due to the lack of available domestic measured data on the dead load moment, the same values of statistical properties used in the calibration of AASHTO-LRFD are applied. The reliability indices for the composite plate girder and box girder bridges with various span lengths are calculated by applying the Rackwitz-Fiessler technique.

Reliability Analysis of Single and Continuous Span Composite Plate and Box Girder Designed by LRFD Method under Flexure (LRFD법으로 설계된 단경간 및 연속경간 강합성 플레이트 거더 및 박스 거더의 휨에 대한 신뢰도해석)

  • Shin, Dong Ku;Roh, Joon Sik;Cho, Eun Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.183-193
    • /
    • 2008
  • The reliability analysis of simply-supported and continuous composite plate girder and box girder bridges under flexure was performed to provide a basic data for the development of LRFD c ode. The bridges were designed based on LRFD specification with newly proposed design live load which was developed by analyzing traffic statistics from highways and local roads. A performance function for flexural failure was expressed as a function of the flexural resistance of composite section and the design moments due to permanent load and live load. For the flexural resistance, the statistical parameters obtained by analyzing over 16,000 domestic structural steel samples were used. Several different values of bias factors for the live load moment from 1.0 to 1.2 were used. Due to the lack of available domestic measured data on the moment by permanent loads, the same statistical properties used in the calibration of ASHTO-LRFD were ap plied. The reliability indices for the composite girder bridges with various span lengths, different live load factors, and bias fact or for the live load were obtained by applying the Rackwitz-Fiessler technique.

Assessment of Partial Safety Factors for Limit States Design of Foundations (한계상태설계법의 기초설계 적용을 위한 부분안전계수의 평가)

  • Kim Bum-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.77-89
    • /
    • 2004
  • While limit states design (LSD) is currently the standard structural design practice, it is relatively new in the geotechnical design. Adoption of LSD far geotechnical design is an international trend. In the present study, various LSD codes from the United States, Canada, and Europe were reviewed. A simple first-order-second-moment (FOSM) reliability analysis was performed to determine theoretically the ranges of load and resistance factor values for representative loads and foundation bearing capacity, respectively. In order for foundation design to be consistent with current structural design practice, it would be desirable to use the same loads, load factors and load combinations. The values of load factor, obtained from the FOSM analysis, were found to be generally consistent with those given in the codes, whereas the values of resistance factor indicated overall lower ranges due to high values of coefficient of variation used in the analysis. Since the degree of uncertainties included in bearing capacity of foundations varies with the methods used to estimate the bearing capacity, different values of resistance factor should be used fur different methods. For the purpose, continuous efforts are needed to be made first to accurately identify and quantify the uncertainties in the methods.