Assessment of Partial Safety Factors for Limit States Design of Foundations

한계상태설계법의 기초설계 적용을 위한 부분안전계수의 평가

  • Kim Bum-Joo (Dam Safety Research Center, Korea Institute of Water and Environment, Korea Water resources Corporation(KOWACO))
  • 김범주 (한국수자원공사 수자원연구원 댐안전연구소)
  • Published : 2004.12.01

Abstract

While limit states design (LSD) is currently the standard structural design practice, it is relatively new in the geotechnical design. Adoption of LSD far geotechnical design is an international trend. In the present study, various LSD codes from the United States, Canada, and Europe were reviewed. A simple first-order-second-moment (FOSM) reliability analysis was performed to determine theoretically the ranges of load and resistance factor values for representative loads and foundation bearing capacity, respectively. In order for foundation design to be consistent with current structural design practice, it would be desirable to use the same loads, load factors and load combinations. The values of load factor, obtained from the FOSM analysis, were found to be generally consistent with those given in the codes, whereas the values of resistance factor indicated overall lower ranges due to high values of coefficient of variation used in the analysis. Since the degree of uncertainties included in bearing capacity of foundations varies with the methods used to estimate the bearing capacity, different values of resistance factor should be used fur different methods. For the purpose, continuous efforts are needed to be made first to accurately identify and quantify the uncertainties in the methods.

한계상태설계법은 구조분야에서는 일반화되어 있으나 지반분야에서는 비교적 새로운 설계법으로 최근 세계적으로 지반구조물의 설계에도 보다 합리적 인 설계를 위하여 한계상태설계법을 적용하려는 추세에 있다. 본 연구에서는 미국, 캐나다, 유럽의 다양한 한계상태설계 시방서들을 수집하여 각국의 시방서들에서 제시된 부분안전계수(하중계수와 저항계수)들을 조사하고, 간단한 FOSM(first order second moment) 신뢰도 해석을 통하여 설계에 이용되는 대표적인 하중들에 대한 하중계수와 기초 지지력에 대한 저항계수를 산정하였다. 기초 설계시 하중계수 및 하중조합은 상부 구조물의 설계에 사용된 조건을 그대로 사용하는 것이 설계의 효율화를 위해 바람직할 것이다. FOSM 해석결과, 산정된 하중계수들은 대부분 시방서의 하중계수들과 비슷한 범위를 나타내었으나, 기초 지지력에 대해 산정된 저항계수는 지반설계요소에 대한 전반적으로 높은 변동계수값으로 인해 전체적으로 시방서보다 낮은 범위를 나타내었다. 지반의 지지력은 매우 다양한 불확실 요소들을 포함하며 해석방법마다 내재된 불확실성의 정도가 다르므로 지지력 산정방법마다 다른 저항계수값이 적용되어야 하며 이를 위해 우선적으로 각 방법에 포함된 개개의 불확실 요소를 포함, 전체 지지력에 대한 불확실성의 정량화를 위한 노력이 필요하다.

Keywords

References

  1. AASHTO (1994), LRFD bridge design specifications, 1st ed., American Association of State Highway and Transportation Officials, Washington D.C.
  2. AASHTO (1998), LRFD bridge design specifications, 2nd ed., American Association of State Highway and Transportation Officials, Washington D.C.
  3. ACI (1999), Building code requirements for structural concrete (318-99) and commentary (318R-99), American Concrete Institute, Detroit
  4. AISC (1994), Load and resistance factor design specification for structural steel buildings, 2nd ed., American Institute of Steel Construction, Inc., Chicago, Illinois
  5. Allen, D. E. (1975), 'Limit states design-probabilistic study', Can. J. Civ. Engrg., Vol. 2, pp.36-49 https://doi.org/10.1139/l75-004
  6. API (1993), Recommended practice for planning, designing and constructing fixed offshore platforms-load and resistance factor design, American Petroleum Institute, Washington D.C.
  7. Barker, R. M., Duncan, J. M., Rojiani, K. B., Ooi, P. S. K., Tan, C. K., and Kim, S. G. (1991), Manuals for the design of bridge foundations, Transportation Research Board, NCHRP report 343
  8. Becker, D. E. (1996), 'Eighteenth canadian geotechnical colloquium: limit states design for foundations. part II. development for the national building code of Canada', Can. Geotech. J., Vol.33, pp.984-1007 https://doi.org/10.1139/t96-125
  9. Cherubini, C., Giasi, C. I., and Rethati, L. (1993), 'The coefficients of variation of some geotechnical parameters', Probabilistic methods in geotechnical engineering, Edited by K. S. Li and S. -C R. Lo., A. A. Balkema, Rotterdam, pp.179-184
  10. Cornell, C. A. (1969), 'Structural safety specifications based on second-moment reliability', Symp. Int. Assn. Brid. and Struct. Engrg., London
  11. DGI (1985), Code of practice for foundation engineering, Danish Geotechnical Institute, Copenhagen, Denmark
  12. ECS (1994), Eurocode 7: geotechnical design-part I: general rules, European Committee for Standardization, Central Secretariat, Brussels
  13. ECS (1995), Eurocode 1: basis of design and actions on structures-part I: basis of design, European Committee for Standardization, Central Secretariat, Brussels
  14. Ellingwood, B. R. and Tekie, P. B. (1999), 'Wind load statistics for probability-based structural design', J. Struct. Engrg., ASCE, Vol.125, No.4, pp.453-463 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:4(453)
  15. Ellingwood, B., Galambos, T. V., MacGregor, J. G., and Cornell C. A. (1980), Development of a probability based load criterion for American National Standard A58 - building code requirements for minimum design loads in buildings and other structures, National Bureau of Standards, Washington, D.C.
  16. Goble, G. (1999), Geotechnical related development and implementation of load and resistance factor design (LRFD) methods, Transportation Research Board, NCHRP synthesis 276
  17. Haldar, A. and Mahadevan, S. (2000), Probability, reliability, and statistical methods in engineering design, John Wiley and Sons, Inc., New York
  18. Hettler, A. (1993), 'Probabilistic approach and partial safety factors for driven piles', Proceedings of the International Symposium on Limit State Design in Geotechnical Engineering, Copenhagen, May 26-28, Vol.1., pp.217-222
  19. Kay, J. N. (1993), 'Probabilistic design of foundations and earth structures', Probabilistic methods in geotechnical engineering, Edited by K. S. Li and S. -C. R. Lo., A. A. Balkema, Rotterdam, pp.49-62
  20. Kulhawy, F. H. (1992), 'On evaluation of static soil properties', American Society of Civil Engineers Specialty Symposium on Stability and Performance of Slopes and Embankments-Il, New York, pp.95-115
  21. Kulhawy, F. H., Trautmann, C. H., Beech, J. F., O'Rourke, T. D., and McGuire, W. (1983), Transmission line structure foundations for uplift-compression loading, EPRI report, EL-2870, Electric Power Research Institute
  22. Lind, N. C. (1971), 'Consistent partial safety factors', J. Struct. Engrg. Div., ASCE, Vol.97, ST6, pp.1651-1670
  23. MacGregor, J. G. (1976), 'Safety and limit states design for reinforced concrete', Can. J. Civ. Engrg., Vol.3, pp.484-513 https://doi.org/10.1139/l76-055
  24. Manoliu, I., and Marcu, A. (1993), '25 years of utilization of the limit state concept in the Romanian Code for geotechnical design', Proceedings of the International Symposium on Limit State Design in Geotechnical Engineering, Copenhagen, May 26-28, VoI.2., pp.533-542
  25. Matsumoto, T., Kusakabe, O., Suzuki, M., and Shogaki, T. (1993), 'Soil parameter selection for serviceability limit design of a pile foundation in a soft rock', Proceedings of the International Symposium on Limit State Design in Geotechnical Engineering, Copenhagen, May 26-28, Vol.1., pp.141-151
  26. Meyerhof, G. G. (1993), 'Development of geotechnical limit state design', Proceedings of the International Symposium on Limit State Design in Geotechnical Engineering, Copenhagen, May 26-28, Vol.1., pp.1-12
  27. Meyerhof, G. G. (1995), 'Development of geotechnical limit state design', Can. Geotech. J. Vol.32, pp.128-136 https://doi.org/10.1139/t95-010
  28. MOT (1992), Ontario highway bridge design code, Ministry of Transportation Ontario, Downsview
  29. Nowak, A. S. (1994), 'Load model for bridge design code', Can. J. Civ. Engrg., Vol.21, pp.36-49 https://doi.org/10.1139/l94-004
  30. NRC (1995), National building code of Canada, National Research Council of Canada, Ottawa
  31. Okahara, M., Kimura, Y., Ochiai, H. and Matsui, K. (1993), 'Statistical characteristics of bearing capacity of single pile', Proceedings ofthe International Symposium on Limit State Design in Geotechnical Engineering, Copenhagen, May 26-28, Vol.1., pp.223-232
  32. Phoon, K. K., Kulhawy, F. H., and Grigoriu, M. D. (1993), 'Observations on reliability-based design of foundation for electrical transmission line structures', Proceedings of the International Symposium on Limit State Design in Geotechnical Engineering, Copenhagen, May 26-28, Vol.2., pp.351-362
  33. Skernpton, A. W., (1951), 'The bearing capacity of clays', Building Research Congress, London, England, Vol.1, pp.180-189