DOI QR코드

DOI QR Code

Resistance Factor Calculation of Driven Piles of Long Span Bridges

장대교량 타입말뚝에 대한 저항계수 산정

  • 김동욱 (한국건설기술연구원 지반연구실) ;
  • 박재현 (한국건설기술연구원 지반연구실) ;
  • 이준용 (한국건설기술연구원 지반연구실) ;
  • 곽기석 (한국건설기술연구원 지반연구실)
  • Received : 2013.04.01
  • Accepted : 2013.04.09
  • Published : 2013.04.28

Abstract

Assessment of uncertainties of loads and resistances is prerequisite for the development of load and resistance factor design (LRFD). Many previous studies related to resistance factor calculations of piles were conducted for short or medium span bridges (span lengths less than 200m) reflecting the live load uncertainty for ordinary span bridges. In this study, by using a revised live load model and its uncertainty for long span bridges (span lengths longer than 200m and shorter than 1500m), resistance factors are recalibrated. For the estimation of nominal pile capacity (both base and shaft capacities), the Imperial College Pile (ICP) design method is used. For clayey and sandy foundation, uncertainty of resistance is assessed based on the ICP database. As long span bridges are typically considered as more important structures than short or medium span bridges, higher target reliability indices are assigned in the reliability analysis. Finally, resistance factors are calculated and proposed for the use of LRFD of driven piles for ordinary span and long span bridges.

하중저항계수설계법(load and resistance factor design, LRFD)을 개발하기 위해서는 하중과 저항에 대한 신뢰성 있는 불확실성 평가가 필요하다. 기존의 말뚝기초 저항계수 산정에 관한 연구는 대부분 일반 교량에 대한 하중의 불확실성을 반영하였다. 본 연구에서는 경간장이 200m이상 300m이하인 교량과 300m이상 1500m이하인 장대 교량에 대하여 수정된 하중모델로부터 평가된 활하중 불확실성을 저항계수 산정에 반영하였다. 타입말뚝 저항을 예측하기 위하여 Imperial College Pile (ICP) 설계법을 사용하였고, 이 설계법을 적용하여 사질토 및 점성토 지반에 대한 타입 말뚝의 저항 불확실성을 평가하였다. 일반 교량에 비하여 장대교량의 경우 파괴시 발생되는 경제적, 인명적 손실이 크기 때문에 기존에 적용한 일반적인 목표신뢰수준을 더 높게 설정하였다. 장대교량에 해당하는 수정된 하중 및 목표신뢰 수준에 대하여 산정된 저항계수와 기존에 일반 교량 기초에 대하여 제시된 저항계수를 비교 분석하였다.

Keywords

References

  1. AASHTO (2010) AASHTO LRFD Bridge Design Specifications Fifth Edition. American Association of State Highway and Transportation Official, Washington DC.
  2. Ang, A. H. -S. and Tang, W. H. (1975), Probability Concepts in Engineering Planning and Design, Vol. I, Basic Principles, John Wiley & Sons, New York.
  3. Barker, R. M. Duncan, J. M. Rojiani, K. S. Ooi, P. S. K., Tan, C. K., and Kim, S. C. (1991), Manual for the Design of Bridge Foundations, NCHRP Report 343, Transportation Research Board, Washington, DC.
  4. Ayyub, B. M. and Assakkaf, I. (1999), LRFD Rules for Naval Surface Ship Structures: Reliability-Based Load and Resistance Factor Design Rules, Naval Surface Warfare Center, Carderock Division, U.S. Navy.
  5. Chow, F. C. (1997), Investigations into Displacement Pile Behaviour for Offshore Foundations, Ph.D thesis, Imperial College, London.
  6. Huh, J., Park, J. H., Kim, K. J., Lee, J. H., and Kwak, K. (2007). "Reliability Estimation of Static Design Methods for Driven Steel Pipe Piles in Korea", Journal of Korean Geotechnical Society, Vol.23, No.12, pp.61-73 (in Korean).
  7. Jardine, R. J. (1985), Investigations of Pile-Soil Behaviour, with Special Reference to the Foundations of Offshore Structures, Ph.D thesis, Imperial College, London.
  8. Jardine, R. J., Chow, F. C., Overy, R. F., and Standing, J. R. (2005), ICP design methods for driven piles in sand and clays, London: Thomas Telford.
  9. Kim, D. and Salgado, R. (2012a). "Load and Resistance Factors for External Stability Checks of Mechanically Stabilized Earth Walls", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.138, No.3, pp.241-251. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000595
  10. Kim, D. and Salgado, R. (2012b). "Load and Resistance Factors for Internal Stability Checks of Mechanically Stabilized Earth Walls", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.138, No.8, pp.910-921. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000664
  11. Kim, D. and Lee, J. (2012). "Resistance Factor Contour Plot for LRFD of Axially-Loaded Driven Piles in Clays", Computers and Geotechnics, Vol.44, pp.9-19. https://doi.org/10.1016/j.compgeo.2012.03.005
  12. Kwak, K., Kim, K. J., Huh, J., Lee, J. H., and Park, J. H. (2010), "Reliability Based Calibration of Resistance Factors for Static Bearing Capacity of Driven Steel Pipe Piles", Canadian Geotechnical journal, Vol.47, pp.528-538. https://doi.org/10.1139/T09-119
  13. Lehane, B. M. (1992), Experimental Investigations of Pile Behaviour Using Instrumented Field Piles, Ph.D thesis, Imperial College, London.
  14. Low, B. K. and Tang, W. H. (2007), "Efficient Spreadsheet Algorithm for First-Order Reliability Method", Journal of Engineering Mechanics, ASCE, Vol.133, No.12, pp.1378-1387. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:12(1378)
  15. Lutomirska, M. (2009), Live Load Models for Long Span Bridges, Ph.D thesis, University of Nebraska, Lincoln.
  16. McVay, M. C., Birgisson, B., Nguyen, T., Kuo, C. L. (2002), "Uncertainty in Load and Resistance Factor Design Phi Factors for Driven Prestressed Concrete Piles", Transportation Research Record, No. 1808, Transportation Research Board, Washington, D.C., pp.99-107.
  17. Meyerhof, G. G. (1970), "Safety Factors in Soil Mechanics", Canadian Geotechnical Journal, Vol.7, No.4, pp.349-355. https://doi.org/10.1139/t70-047
  18. Misra, A., Roberts, L. A., Oberoi, R., and Chen, C. -H. (2007), "Unvertainty analysis of micropile pullout based upon load test results", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.133, No.8, pp.1017-1025. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(1017)
  19. Nowak, A. S. (1999), Calibration of LRFD Bridge Design Code, NCHRP Report 368. Washington D.C., Transportation Research Board.
  20. Ochiai, H., Li, X., Otani J., and Matsui, K. (1994), "Reliability of Vertical Bearing Resistance of Bored Friction Piles", Memoirs of the Faculty of Engineering, Kyushu University, Vol.54, No.1, pp.1-24.
  21. Paikowsky, S. G., Birgisson, B., McVay, M. C., Nguyen, T., Kuo, C. L., Baecher, G., Ayyab, B., Stenersen, K., O'Malley, K., Chernauskas, L., and O'Neill, M. (2004), Load and Resistance Factor Design for Deep Foundations, NCHRP Report 507, Transportation Research Board, Washington, D.C.
  22. Park, J. H., Huh, J., Kim, M. M., and Kwak, K. (2008), "Resistance Factors of Driven Steel Pipe Piles for LRFD Design in Korea", Journal of Korean Society of Civil Engineering, Vol.28, No.6C, pp.367-377 (in Korean).
  23. Park, J. H., Kim, D., and Chung, C. K. (2012). "Implementation of Bayesian theory on LRFD of axially loaded driven piles", Computers and Geotechnics, Vol.42, pp.73-80. https://doi.org/10.1016/j.compgeo.2012.01.002
  24. Rackwitz, R. and Fiessler, B. (1978). "Structural Reliability Under Combined Random Load Sequences," Computers and Structures, Vol.9, pp.489-494. https://doi.org/10.1016/0045-7949(78)90046-9
  25. Salgado, R., Woo, S. I., and Kim, D. (2011). Development of Load and Resistance Factor Design for Ultimate and Serviceability Limit States of Transportation Structure Foundations, FHWA/IN/JTRP-2009/24.
  26. Titi, H. H., Mahamid, M., Abu-Farsakh, M. Y., and Elias, M. (2004), "Evaluation of CPT Methods for Load and Resistance Factor Design of Driven Piles." Proc Geo-Trans 2004, Geotech Eng Trans Proj, GSP, Vol.126, pp.687-696.
  27. Yoon, G. L. and O'Neill, M. W. (1996), "Design Model Bias Factors for Driven Piles from Experiments at NGES-UH," Geotechnical Special Publication, Vol.58, pp.761-773.