• Title/Summary/Keyword: 피어슨 시스템

Search Result 74, Processing Time 0.021 seconds

Reliability-Based Design Optimization Using Enhanced Pearson System (개선된 피어슨 시스템을 이용한 신뢰성기반 최적설계)

  • Kim, Tae-Kyun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.125-130
    • /
    • 2011
  • Since conventional optimization that is classified as a deterministic method does not consider the uncertainty involved in a modeling or manufacturing process, an optimum design is often determined to be on the boundaries of the feasible region of constraints. Reliability-based design optimization is a method for obtaining a solution by minimizing the objective function while satisfying the reliability constraints. This method includes an optimization process and a reliability analysis that facilitates the quantization of the uncertainties related to design variables. Moment-based reliability analysis is a method for calculating the reliability of a system on the basis of statistical moments. In general, on the basis of these statistical moments, the Pearson system estimates seven types of distributions and determines the reliability of the system. However, it is technically difficult to practically consider the Pearson Type IV distribution. In this study, we propose an enhanced Pearson Type IV distribution based on a kriging model and validate the accuracy of the enhanced Pearson Type IV distribution by comparing it with a Monte Carlo simulation. Finally, reliability-based design optimization is performed for a system with type IV distribution by using the proposed method.

A Constrained Pearson Algorithm that uses Co-occurrence for Collaborative Filtering (협동적 필터링을 위한 동시출현빈도 사용의 제한 피어슨 알고리즘)

  • Kim, Jin-Sang;Yoon, Byong-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.561-564
    • /
    • 2002
  • 최근 전자상거래 시스템에서 구매 촉진을 위해 사용하고 있는 핵심기술은 고객들로부터 얻어진 구매정보를 기초로 고객이 좋아할 만한 제품을 예측하여 고객에게 정보를 제공하는 추천시스템이다. 이러한 추천시스템을 위한 추천알고리즘으로서 협동적 필터링(collaborative filtering) 알고리즘이 많이 사용되고 있다. 이 논문에서는 기존의 협동적 필터링 알고리즘의 성능을 향상시킨 동시출현 빈도 개념 알고리즘과 제한 피어슨 알고리즘을 접목시켜서, 사용자 선호도의 예측 정확도를 좀 더 향상시킬 수 있는 새로운 방법을 제안하고, 실험을 통해서 제안한 방법의 예측 정확도의 우수성을 증명하였다.

  • PDF

Improvement on Similarity Calculation in Collaborative Filtering Recommendation using Demographic Information (인구 통계 정보를 이용한 협업 여과 추천의 유사도 개선 기법)

  • 이용준;이세훈;왕창종
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.5
    • /
    • pp.521-529
    • /
    • 2003
  • In this paper we present an improved method by using demographic information for overcoming the similarity miss-calculation from the sparsity problem in collaborative filtering recommendation systems. The similarity between a pair of users is only determined by the ratings given to co-rated items, so items that have not been rated by both users are ignored. To solve this problem, we add virtual neighbor's rating using demographic information of neighbors for improving prediction accuracy. It is one kind of extentions of traditional collaborative filtering methods using the peason correlation coefficient. We used the Grouplens movie rating data in experiment and we have compared the proposed method with the collaborative filtering methods by the mean absolute error and receive operating characteristic values. The results show that the proposed method is more efficient than the collaborative filtering methods using the pearson correlation coefficient about 9% in MAE and 13% in sensitivity of ROC.

User Preference Prediction Method Using Associative User Clustering and Bayesian Classification (연관 사용자 군집과 베이지안 분류를 이용한 사용자 선호도 예측 방법)

  • 정경용;김진현;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.109-111
    • /
    • 2001
  • 기존의 협력적 필터링 기술을 이용한 사용자 선호도 예측 방법에서는 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법(Nearest-Neighborhood Method)을 사용하고, 피어슨 상관 계수에 의해 사용자의 유사도를 구하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하였다. 본 논문에서는 기존의 사용자 선호도 예측 방법의 문제점을 보완하기 위하여 연관 사용자 군집과 베이지안 분류를 이음한 사용자 선호도 예측 방법을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서의 희박성(Sparsity)문제를 해결하기 위하여 ARHP 알고리즘을 사용하여 사용자를 장르별로 군집하며 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도출 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 기존의 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게 하여 예측의 정확도를 높일 수 있다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다.

  • PDF

Structure Reliability Analysis using 3rd Order Polynomials Approximation of a Limit State Equation (한계상태식의 3차 다항식 근사를 통한 구조물 신뢰도 평가)

  • Lee, Seung Gyu;Kim, Sung Chan;Kim, Tea Uk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • In this paper, uncertainties and failure criteria of structure are mathematically expressed by random variables and a limit state equation. A limit state equation is approximated by Fleishman's 3rd order polynomials and the theoretical moments of an approximated limit state equation are calculated. Fleishman introduced a 3rd order polynomial in terms of only standard normal distiribution random variables. But, in this paper, Fleishman's polynomial is extended to various random variables including beta, gamma, uniform distributions. Cumulants and a normalized limit state equation are used to calculate a theoretical moments of a limit state equation. A cumulative distribution function of a normalized limit state equation is approximated by a Pearson system.

Analysis of Performance Improvement of Collaborative Filtering based on Neighbor Selection Criteria (이웃 선정 조건에 따른 협력 필터링의 성능 향상 분석)

  • Lee, Soojung
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.4
    • /
    • pp.55-62
    • /
    • 2015
  • Recommender systems through collaborative filtering has been utilized successfully in various areas by providing with convenience in searching information. Measuring similarity is critical in determining performance of these systems, because it is the criteria for the range of recommenders. This study analyzes distributions of similarity from traditional measures and investigates relations between similarities and the number of co-rated items. With this, this study suggests a method for selecting reliable recommenders by restricting similarities, which compensates for the drawbacks of previous measures. Experimental results showed that restricting similarities of neighbors by upper and lower thresholds yield superior performance than previous methods, especially when consulting fewer nearest neighbors. Maximum improvement of 0.047 for cosine similarity and that of 0.03 for Pearson was achieved. This result tells that a collaborative filtering system using Pearson or cosine similarities should not consult neighbors with very high or low similarities.

Clustering-Based Recommendation Using Users' Preference (사용자 선호도를 사용한 군집 기반 추천 시스템)

  • Kim, Younghyun;Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.277-284
    • /
    • 2017
  • In a flood of information, most users will want to get a proper recommendation. If a recommender system fails to give appropriate contents, then quality of experience (QoE) will be drastically decreased. In this paper, we propose a recommender system based on the intra-cluster users' item preference for improving recommendation accuracy indices such as precision, recall, and F1 score. To this end, first, users are divided into several clusters based on the actual rating data and Pearson correlation coefficient (PCC). Afterwards, we give each item an advantage/disadvantage according to the preference tendency by users within the same cluster. Specifically, an item will be received an advantage/disadvantage when the item which has been averagely rated by other users within the same cluster is above/below a predefined threshold. The proposed algorithm shows a statistically significant performance improvement over the item-based collaborative filtering algorithm with no clustering in terms of recommendation accuracy indices such as precision, recall, and F1 score.

Selecting Marketing Domains and Customer Groups by Pre-evaluation on Recommendation (추천 선행평가에 의한 마케팅 도메인 및 고객군 선정)

  • 윤찬식;이수원
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.220-229
    • /
    • 2002
  • 협력적 추천 기법은 유사한 이웃의 선호도를 이용하여 고객에게 개인화된 아이템을 추천해 주는 방법으로 비교적 높은 정확도를 보이며 추천 시스템의 중심으로 연구되어져 왔다. 그러나, 지금까지의 추천 시스템은 도메인의 특성을 제대로 고려하지 못한채 추천을 시행함으로써 특정 도메인에서 추천의 정확도가 떨어지는 문제점이 발생하였다. 이러한 문제점들을 보완하기 위하여 본 논문에서는 평균 고객 유사도, 평균 아이템 유사도, 밀집도 등의 추천 선행 평가 척도를 제안하고, 추천 선행평가 척도와 추천의 정확도와의 상관관계를 보이며, 이를 이용하여 짧은 수행시간 안에 추천 적용이 가능한 마케팅 도메인 및 고객군을 선정하는 방법을 제시한다.

  • PDF

The Development of Infrared Thermal Imaging Safety Diagnosis System Using Pearson's Correlation Coefficient (피어슨 상관계수를 이용한 적외선 열화상 안전 진단 시스템 개발)

  • Jung, Jong-Moon;Park, Sung-Hun;Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.55-65
    • /
    • 2019
  • With the rapid development of the national industry, the importance of electrical safety was recognized because of a lot of new electrical equipment are installing and the electrical accidents have been occurring annually. Today, the electrical equipments is inspect by using the portable Infrared thermal imaging camera. but the most negative element of using the camera is inspected for only state of heating, the reliable diagnosis is depended with inspector's knowledge, and real-time monitoring is impossible. This paper present the infrared thermal imaging safety diagnosis system. This system is able to monitor in real time, predict the state of fault, and diagnose the state with analysis of thermal and power data. The system consists of a main processor, an infrared camera module, the power data acquisition board, and a server. The diagnostic algorithm is based on a mathematical model designed by analyzing the Pearson's Correlation Coefficient between temperature and power data. To test the prediction algorithm, the simulations were performed by damaging the terminals or cables on the switchboard to generate a large amount of heat. Utilizing these simulations, the developed prediction algorithm was verified.