Transactions of the Korean Society of Mechanical Engineers A
/
v.35
no.2
/
pp.125-130
/
2011
Since conventional optimization that is classified as a deterministic method does not consider the uncertainty involved in a modeling or manufacturing process, an optimum design is often determined to be on the boundaries of the feasible region of constraints. Reliability-based design optimization is a method for obtaining a solution by minimizing the objective function while satisfying the reliability constraints. This method includes an optimization process and a reliability analysis that facilitates the quantization of the uncertainties related to design variables. Moment-based reliability analysis is a method for calculating the reliability of a system on the basis of statistical moments. In general, on the basis of these statistical moments, the Pearson system estimates seven types of distributions and determines the reliability of the system. However, it is technically difficult to practically consider the Pearson Type IV distribution. In this study, we propose an enhanced Pearson Type IV distribution based on a kriging model and validate the accuracy of the enhanced Pearson Type IV distribution by comparing it with a Monte Carlo simulation. Finally, reliability-based design optimization is performed for a system with type IV distribution by using the proposed method.
Proceedings of the Korea Information Processing Society Conference
/
2002.04a
/
pp.561-564
/
2002
최근 전자상거래 시스템에서 구매 촉진을 위해 사용하고 있는 핵심기술은 고객들로부터 얻어진 구매정보를 기초로 고객이 좋아할 만한 제품을 예측하여 고객에게 정보를 제공하는 추천시스템이다. 이러한 추천시스템을 위한 추천알고리즘으로서 협동적 필터링(collaborative filtering) 알고리즘이 많이 사용되고 있다. 이 논문에서는 기존의 협동적 필터링 알고리즘의 성능을 향상시킨 동시출현 빈도 개념 알고리즘과 제한 피어슨 알고리즘을 접목시켜서, 사용자 선호도의 예측 정확도를 좀 더 향상시킬 수 있는 새로운 방법을 제안하고, 실험을 통해서 제안한 방법의 예측 정확도의 우수성을 증명하였다.
In this paper we present an improved method by using demographic information for overcoming the similarity miss-calculation from the sparsity problem in collaborative filtering recommendation systems. The similarity between a pair of users is only determined by the ratings given to co-rated items, so items that have not been rated by both users are ignored. To solve this problem, we add virtual neighbor's rating using demographic information of neighbors for improving prediction accuracy. It is one kind of extentions of traditional collaborative filtering methods using the peason correlation coefficient. We used the Grouplens movie rating data in experiment and we have compared the proposed method with the collaborative filtering methods by the mean absolute error and receive operating characteristic values. The results show that the proposed method is more efficient than the collaborative filtering methods using the pearson correlation coefficient about 9% in MAE and 13% in sensitivity of ROC.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.109-111
/
2001
기존의 협력적 필터링 기술을 이용한 사용자 선호도 예측 방법에서는 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법(Nearest-Neighborhood Method)을 사용하고, 피어슨 상관 계수에 의해 사용자의 유사도를 구하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하였다. 본 논문에서는 기존의 사용자 선호도 예측 방법의 문제점을 보완하기 위하여 연관 사용자 군집과 베이지안 분류를 이음한 사용자 선호도 예측 방법을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서의 희박성(Sparsity)문제를 해결하기 위하여 ARHP 알고리즘을 사용하여 사용자를 장르별로 군집하며 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도출 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 기존의 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게 하여 예측의 정확도를 높일 수 있다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다.
Journal of the Computational Structural Engineering Institute of Korea
/
v.26
no.3
/
pp.183-189
/
2013
In this paper, uncertainties and failure criteria of structure are mathematically expressed by random variables and a limit state equation. A limit state equation is approximated by Fleishman's 3rd order polynomials and the theoretical moments of an approximated limit state equation are calculated. Fleishman introduced a 3rd order polynomial in terms of only standard normal distiribution random variables. But, in this paper, Fleishman's polynomial is extended to various random variables including beta, gamma, uniform distributions. Cumulants and a normalized limit state equation are used to calculate a theoretical moments of a limit state equation. A cumulative distribution function of a normalized limit state equation is approximated by a Pearson system.
The Journal of Korean Association of Computer Education
/
v.18
no.4
/
pp.55-62
/
2015
Recommender systems through collaborative filtering has been utilized successfully in various areas by providing with convenience in searching information. Measuring similarity is critical in determining performance of these systems, because it is the criteria for the range of recommenders. This study analyzes distributions of similarity from traditional measures and investigates relations between similarities and the number of co-rated items. With this, this study suggests a method for selecting reliable recommenders by restricting similarities, which compensates for the drawbacks of previous measures. Experimental results showed that restricting similarities of neighbors by upper and lower thresholds yield superior performance than previous methods, especially when consulting fewer nearest neighbors. Maximum improvement of 0.047 for cosine similarity and that of 0.03 for Pearson was achieved. This result tells that a collaborative filtering system using Pearson or cosine similarities should not consult neighbors with very high or low similarities.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.2
/
pp.277-284
/
2017
In a flood of information, most users will want to get a proper recommendation. If a recommender system fails to give appropriate contents, then quality of experience (QoE) will be drastically decreased. In this paper, we propose a recommender system based on the intra-cluster users' item preference for improving recommendation accuracy indices such as precision, recall, and F1 score. To this end, first, users are divided into several clusters based on the actual rating data and Pearson correlation coefficient (PCC). Afterwards, we give each item an advantage/disadvantage according to the preference tendency by users within the same cluster. Specifically, an item will be received an advantage/disadvantage when the item which has been averagely rated by other users within the same cluster is above/below a predefined threshold. The proposed algorithm shows a statistically significant performance improvement over the item-based collaborative filtering algorithm with no clustering in terms of recommendation accuracy indices such as precision, recall, and F1 score.
Proceedings of the Korea Inteligent Information System Society Conference
/
2002.11a
/
pp.220-229
/
2002
협력적 추천 기법은 유사한 이웃의 선호도를 이용하여 고객에게 개인화된 아이템을 추천해 주는 방법으로 비교적 높은 정확도를 보이며 추천 시스템의 중심으로 연구되어져 왔다. 그러나, 지금까지의 추천 시스템은 도메인의 특성을 제대로 고려하지 못한채 추천을 시행함으로써 특정 도메인에서 추천의 정확도가 떨어지는 문제점이 발생하였다. 이러한 문제점들을 보완하기 위하여 본 논문에서는 평균 고객 유사도, 평균 아이템 유사도, 밀집도 등의 추천 선행 평가 척도를 제안하고, 추천 선행평가 척도와 추천의 정확도와의 상관관계를 보이며, 이를 이용하여 짧은 수행시간 안에 추천 적용이 가능한 마케팅 도메인 및 고객군을 선정하는 방법을 제시한다.
With the rapid development of the national industry, the importance of electrical safety was recognized because of a lot of new electrical equipment are installing and the electrical accidents have been occurring annually. Today, the electrical equipments is inspect by using the portable Infrared thermal imaging camera. but the most negative element of using the camera is inspected for only state of heating, the reliable diagnosis is depended with inspector's knowledge, and real-time monitoring is impossible. This paper present the infrared thermal imaging safety diagnosis system. This system is able to monitor in real time, predict the state of fault, and diagnose the state with analysis of thermal and power data. The system consists of a main processor, an infrared camera module, the power data acquisition board, and a server. The diagnostic algorithm is based on a mathematical model designed by analyzing the Pearson's Correlation Coefficient between temperature and power data. To test the prediction algorithm, the simulations were performed by damaging the terminals or cables on the switchboard to generate a large amount of heat. Utilizing these simulations, the developed prediction algorithm was verified.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.