DOI QR코드

DOI QR Code

Clustering-Based Recommendation Using Users' Preference

사용자 선호도를 사용한 군집 기반 추천 시스템

  • Kim, Younghyun (Department of Computer Science and Engineering, Dankook University) ;
  • Shin, Won-Yong (Department of Computer Science and Engineering, Dankook University)
  • Received : 2016.11.07
  • Accepted : 2016.11.18
  • Published : 2017.02.28

Abstract

In a flood of information, most users will want to get a proper recommendation. If a recommender system fails to give appropriate contents, then quality of experience (QoE) will be drastically decreased. In this paper, we propose a recommender system based on the intra-cluster users' item preference for improving recommendation accuracy indices such as precision, recall, and F1 score. To this end, first, users are divided into several clusters based on the actual rating data and Pearson correlation coefficient (PCC). Afterwards, we give each item an advantage/disadvantage according to the preference tendency by users within the same cluster. Specifically, an item will be received an advantage/disadvantage when the item which has been averagely rated by other users within the same cluster is above/below a predefined threshold. The proposed algorithm shows a statistically significant performance improvement over the item-based collaborative filtering algorithm with no clustering in terms of recommendation accuracy indices such as precision, recall, and F1 score.

사용자가 좋아할만한 콘텐츠를 정확하게 추천하는 것은 추천 시스템에서 매우 중요한 요소 중 하나이다. 원치 않는 콘텐츠를 추천하거나, 원하는 것을 추천하지 않는 것은 사용자 만족도 측면에서 안 좋은 영향을 끼친다. 본 연구에서는 콘텐츠의 정확한 추천을 위해 사용자 군집 기반 추천 시스템을 제안한다. 제안하는 알고리즘에서 사용자들의 실제 선호도 점수와 피어슨 상관 계수를 기반으로 사용자들을 여러 군집으로 나눈다. 이 후, 특정 사용자에게 어떤 콘텐츠의 추천 여부 결정은, 같은 군집 내에 있는 다른 사용자들의 해당 콘텐츠의 실제 선호도 점수를 근거로 정한다. 제안하는 알고리즘은 군집화를 사용하지 않는 아이템 기반 협력 필터링 알고리즘보다 정밀도, 재현율, F1 스코어와 같은 추천 정확도에 있어서 의미 있는 성능 향상을 보인다.

Keywords

References

  1. D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, "Recommender systems: An introduction," Cambridge University Press, 2010.
  2. J. A. Konstan and J. Riedl, "Recommender systems: From algorithms to user experience," Springer User Modeling and User-Adapted Interaction, vol. 22, no. 1, pp. 101-123, March 2012. https://doi.org/10.1007/s11257-011-9112-x
  3. X. Su and T. M. Khoshgoftaar, "A survey of collaborative filtering techniques," Advances in Artificial Intelligence, vol. 2009, no. 421425, pp. 1-19, 2009.
  4. M. J. Pazzani and D. Billsus, "Content-based recommendation systems," Springer Lecture Notes in Computer Science, vol. 4321, pp. 325-341, 2007.
  5. Netflix Prize, http://www.netflixprize.com/
  6. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, 521, pp. 436-444, May 2015. https://doi.org/10.1038/nature14539
  7. P. M. Napol, "Special issue introduction: Big data and media management," International Journal on Media Management, vol. 18, no. 1, pp. 1-7, June 2016. https://doi.org/10.1080/14241277.2016.1185888
  8. M. S. Berrie, "Curatorial compass: Organising meaning in institutional and online displays," Museological Review, vol. 18, no. 1, pp. 61-68, 2014.
  9. C. Cheng, X. Wang, Z. Li, and Y. Lin, "A new TV recommendation algorithm based on interest quantification and item clustering," in Proceedings of the IEEE ICSESS, Beijing, China, pp. 215-200, September 2015.
  10. X. Wang, X. Wang, Z. Ding, X. Nie, and L. Xiao, "A new algorithm based on item clustering and matrix factorization," International Journal of Engineering and Technology, vol. 9, no. 2, pp. 160-165, January 2017. https://doi.org/10.7763/IJET.2017.V9.963
  11. W. H. Gomaa and A. A. Fahmy, "A survey of text similarity approaches," International Journal of Computer Applications, vol. 68, no. 13, pp. 13-18, April 2013. https://doi.org/10.5120/11638-7118
  12. U. Luxburg, "A tutorial on spectral clustering," Springer Statistics and Computing, vol. 17, no. 4, pp. 395-416, December 2007. https://doi.org/10.1007/s11222-007-9033-z
  13. J. Lee, D. Lee, Y.-C. Lee, W.-S. Hwang, and S.-W. Kim, "Improving the accuracy of top-N recommendation using a preference model," Information Sciences, vol. 348, no. 20, pp. 290-304, June 2016. https://doi.org/10.1016/j.ins.2016.02.005
  14. J. Schaffer, T. Hollerer, and J. O'Donovan, "Hypothetical recommendation: A study of interactive profile manipulation behavior for recommender systems," in Proceedings of the FLAIRS, Hollywood, USA, pp. 507- 512, May 2015.
  15. D. Song and D. A. Meyer, "Recommending positive links in signed social networks by optimizing a generalized AUC," in Proceedings of the AAAI, Austin, USA, pp. 290-296, January 2015.