Abstract
In a flood of information, most users will want to get a proper recommendation. If a recommender system fails to give appropriate contents, then quality of experience (QoE) will be drastically decreased. In this paper, we propose a recommender system based on the intra-cluster users' item preference for improving recommendation accuracy indices such as precision, recall, and F1 score. To this end, first, users are divided into several clusters based on the actual rating data and Pearson correlation coefficient (PCC). Afterwards, we give each item an advantage/disadvantage according to the preference tendency by users within the same cluster. Specifically, an item will be received an advantage/disadvantage when the item which has been averagely rated by other users within the same cluster is above/below a predefined threshold. The proposed algorithm shows a statistically significant performance improvement over the item-based collaborative filtering algorithm with no clustering in terms of recommendation accuracy indices such as precision, recall, and F1 score.
사용자가 좋아할만한 콘텐츠를 정확하게 추천하는 것은 추천 시스템에서 매우 중요한 요소 중 하나이다. 원치 않는 콘텐츠를 추천하거나, 원하는 것을 추천하지 않는 것은 사용자 만족도 측면에서 안 좋은 영향을 끼친다. 본 연구에서는 콘텐츠의 정확한 추천을 위해 사용자 군집 기반 추천 시스템을 제안한다. 제안하는 알고리즘에서 사용자들의 실제 선호도 점수와 피어슨 상관 계수를 기반으로 사용자들을 여러 군집으로 나눈다. 이 후, 특정 사용자에게 어떤 콘텐츠의 추천 여부 결정은, 같은 군집 내에 있는 다른 사용자들의 해당 콘텐츠의 실제 선호도 점수를 근거로 정한다. 제안하는 알고리즘은 군집화를 사용하지 않는 아이템 기반 협력 필터링 알고리즘보다 정밀도, 재현율, F1 스코어와 같은 추천 정확도에 있어서 의미 있는 성능 향상을 보인다.