• Title/Summary/Keyword: 플라즈마 화학기상증착

Search Result 179, Processing Time 0.026 seconds

The Vertical Growth of CNTs by DC Bias-Assisted PECVD and Their Field Emission Properties. (플라즈마 화학 기상 증착법에서 DC bias가 인가된 탄소나노튜브의 수직성장과 전계방출 특성)

  • 정성회;김광식;장건익;류호진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.367-372
    • /
    • 2002
  • The vertically well-aligned carbon nanotubes(CNTs) were successfully grown on Ni coated silicon wafer substrate by DC bias-assisted PECVD(Plasma Enhanced Chemical Vapor Deposition). As a catalyst, Ni thin film of thickness ranging from 15~30nm was prepared by electron beam evaporator method. In order to find the optimum growth condition, the type of gas mixture such as $C_2H_2-NH_3$ was systematically investigated by adjusting the gas mixing ratio at $570^{\circ}C$ under 0.4Torr. The diameter of the grown CNTs was 40~200nm and the diameter of the CNTs increased with increasing the Ni particles size. TEM images clearly showed carbon nanotubes to be multiwalled. The measured turn-on field was $3.9V/\mu\textrm{m}$ and an emission current of $1.4{\times}10^4A/\textrm{cm}^2$ was $7V/\mu\textrm{m}$. The CNTs grown by bias-assisted PECVD was able to demonstrate high quality in terms of vertical alignment, crystallization of graphite and the processing technique at low temperature of $570^{\circ}C$ and this can be applied for the emitter tip of FEDs.

Growth of Carbon Nanotubes by Microwave Plasma Enhanced Chemical Vapor Deposition (마이크로웨이브 플라즈마 화학기상증착법에 의한 탄소나노튜브의 성장특성)

  • Choi Sung-Hun;Lee Jae-Hyeoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.501-506
    • /
    • 2006
  • Carbon nanotubes (CNTs) were grown with a microwave plasma enhanced chemical vapor deposition (MPECVD) method, which has been regarded as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the low temperature and the large area growth. MPECVD used methane ($CH_4$) and hydrogen ($H_2$) gas for the growth of CNTs. 10 nm thick Ni catalytic layer were deposited on the Ti coated Si substrate by RF magnetron sputtering method. In this work, the pretreatment was that the Ni catalytic layer in different microwave power (600, 700, and 800 W). After that, CNTs deposited on different pressures (8, 12, 16, and 24 Torr) and grown same microwave power (800 W). SEM (Scanning electron microscopy) images showed Ni catalytic layer diameter and density variations were dependent with their pretreatment conditions. Raman spectroscopy of CNTs shows that $I_D/I_G$ ratios and G-peak positions vary with pretreatment conditions.

Characteristics of oxynitride films grown by PECVD using $N_2O$ gas ($N_2O$가스를 사용하여 PECVD로 성장된 Oxynitride막의 특성)

  • 최현식;이철인;장의구
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 1996
  • Plasma enhanced chemical vapor deposition (PECVD) allows low temperature processing and so it is widely used, but it causes instability of devices due to serious amount of impurities within the film. In this paper, electrical and chemical characteristics of the PECVD oxynitride film formed by different N$_{2}$O to N$_{2}$O+NH$_{3}$ gas ratio is studied. It has been found that hydrogen concentration of PECVD oxynitride film was decreased from 4.25*10$^{22}$ [cm$^{-2}$ ] to 1.18*10$^{21}$ [cm$^{-2}$ ] according to the increase of N$_{2}$O gas. It was also found that PECVD oxynitride films have low trap density in the oxide and interface in comparison with PECVD nitroxide films, and has higher refractive index and capacitance than oxide films. In particular, oxynitride film formed in gas ratio of N$_{2}$O/(N$_{2}$O+NH$_{3}$)= 0.88 shows increased capacitance and decreased leakage current due to small portion of hydrogen in oxide and the accumulation of nitrogen about 4[atm.%] at the interface.

  • PDF

Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by plasma-enhanced chemical vapor deposition (플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성)

  • Oh, Jung-Keun;Ju, Byeong-Kwon;Kim, Nam-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.71-75
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and are analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene($C_2H_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen($H_2$) gas plasma indicates better vertical alignment, lower temperature process and longer tip, compared to that grown by ammonia($NH_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be $2.6\;V/{\mu}m$. We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.

  • PDF

Chemical Vapor Deposition of Inorganic Thin Films using Atmospheric Plasma : A Review of Research Trend (상압 플라즈마를 이용한 무기박막의 화학기상 증착법에 대한 연구동향)

  • Kim, Kyong Nam;Lee, Seung Min;Yeom, Geun Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.245-252
    • /
    • 2015
  • In recent years, the cleaning and activation technology of surfaces using atmospheric plasma as well as the deposition technology for coating using atmospheric plasma have been demonstrated conclusively and drawn increasing industrial attention. Especially, due to the simplicity, the technology using atmospheric plasma enhanced chemical vapor deposition has been widely studied from many researchers. The plasma source type commonly used as the stabilization of diffuse glow discharges for atmospheric pressure plasma enhanced chemical vapor deposition pressure is the dielectric barrier discharge. In this review paper, some kinds of modified dielectric barrier discharge type will be presented. And, the characteristics of silicon based compound such as SiOx and SiNx deposited using atmospheric plasma enhanced chemical vapor system will be discussed.

Study on the Mechanism and Modeling for Super-filling of High-Aspect-Ratio Features with Copper by Catalyst Enhanced Chemical Vapor Deposition Coupled with Plasma Treatment (플라즈마 처리와 결합된 Cu 촉매반응 화학기상증착법의 메커니즘과 고종횡비 패턴의 충진양상 전산모사에 대한 연구)

  • Kim, Chang-Gyu;Lee, Do-Seon;Lee, Won-Jong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.334-341
    • /
    • 2011
  • The mechanism behind super-filling of high-aspect-ratio features with Cu by catalyst-enhanced chemical vapor deposition (CECVD) coupled with plasma treatment is described and the metrology required to predict the filling feasibility is identified and quantified. The reaction probability of a Cu precursor was determined as a function of substrate temperature. Iodine adatoms are deactivated by the bombardment of energetic particles and also by the overdeposition of sputtered Cu atoms during the plasma treatment. The degree of deactivation of adsorbed iodine was experimentally quantified. The quantified factors, reaction probability and degree of deactivation of iodine were introduced to the simulation for the prediction of the trench filling aspect by CECVD coupled with plasma treatment. Simulated results show excellent agreement with the experimental filling aspects.

Various Shape of Carbon Layer on Ga2O3 Thin Film by Controlling Methane Fraction in Radio Frequency Plasma Chemical Vapor Deposition (Ga2O3박막 상에서의 RF 플라즈마 화학기상증착법의 메테인 분율 조절에 의한 탄소층의 다양한 형상 제어 연구)

  • Seo, Ji-Yeon;Shin, Yun-Ji;Jeong, Seong-Min;Kim, Tae-Gyu;Bae, Si-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, we controlled the shape of a carbon layer on gallium oxide templates. Gallium oxide layers were deposited on sapphire substrates using mist chemical vapor deposition. Subsequently, carbon layers were formed using radio frequency plasma chemical vapor deposition. Various shapes of carbon structures appeared according to the fraction of methane gas, used as a precursor. As methane gas concentration was adjusted from 1 to 100%, The shapes of carbon structures varied to diamonds, nanowalls, and spheres. The growth of carbon isotope structures on Ga2O3 templates will give rise to improving the electrical and thermal properties in the next-generation electronic applications.

Bond Strength of Wafer Stack Including Inorganic and Organic Thin Films (무기 및 유기 박막을 포함하는 웨이퍼 적층 구조의 본딩 결합력)

  • Kwon, Yongchai;Seok, Jongwon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.619-625
    • /
    • 2008
  • The effects of thermal cycling on residual stresses in both inorganic passivation/insulating layer that is deposited by plasma enhanced chemical vapor deposition (PECVD) and organic thin film that is used as a bonding adhesive are evaluated by 4 point bending method and wafer curvature method. $SiO_2/SiN_x$ and BCB (Benzocyclobutene) are used as inorganic and organic layers, respectively. A model about the effect of thermal cycling on residual stress and bond strength (Strain energy release rate), $G_c$, at the interface between inorganic thin film and organic adhesive is developed. In thermal cycling experiments conducted between $25^{\circ}C$ and either $350^{\circ}C$ or $400^{\circ}C$, $G_c$ at the interface between BCB and PECVD $ SiN_x $ decreases after the first cycle. This trend in $G_c$ agreed well with the prediction based on our model that the increase in residual tensile stress within the $SiN_x$ layer after thermal cycling leads to the decrease in $G_c$. This result is compared with that obtained for the interface between BCB and PECVD $SiO_2$, where the relaxation in residual compressive stress within the $SiO_2$ induces an increase in $G_c$. These opposite trends in $G_cs$ of the structures including either PECVD $ SiN_x $ or PECVD $SiO_2$ are caused by reactions in the hydrogen-bonded chemical structure of the PECVD layers, followed by desorption of water.

Enhancement of the Mechanical Properties of CNT Fibers Synthesized by Direct Spinning Method with Various Post-Treatments (직접 방사법으로 합성된 탄소나노튜브 섬유의 기계적 특성 향상)

  • Kim, Jin-seok;Park, Junbeom;Kim, Seung Min;Kwac, L.K;Hwang, Jun Yeon
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.239-243
    • /
    • 2015
  • Recent studies regarding the properties of carbon nanotubes (CNT) have made remarkable progress in CNT fibers research. However no CNT fibers showed the properties of CNTs because CNTs in fibers have weak interfacial bonding with low shear modulus in the pristine form. Thus, it is upmost interest to develop and employ post-production treatments to the CNT fibers that would potentially improve their properties. In this study, post-treatments resulted in improvement of strength of CNT fibers up to 40%.

A Study on the Effects of High Temperature Thermal Cycling on Bond Strength at the Interface between BCB and PECVD SiO2 Layers (고온 열순환 공정이 BCB와 PECVD 산화규소막 계면의 본딩 결합력에 미치는 영향에 대한 연구)

  • Kwon, Yongchai;Seok, Jongwon;Lu, Jian-Qiang;Cale, Timothy S.;Gutmann, Ronald J.
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.389-396
    • /
    • 2008
  • The effect of thermal cycling on bond strength and residual stress at the interface between benzocyclobutene (BCB) and plasma enhanced chemical vapor deposited (PECVD) silicon dioxide ($SiO_2$) coated silicon wafers were evaluated by four point bending and wafer curvature techniques. Wafers were bonded using a pre-established baseline process. Thermal cycling was done between room temperature and a maximum peak temperature. In thermal cycling performed with 350 and $400^{\circ}C$ peak temperature, the bond strength increased substantially during the first thermal cycle. The increase in bond strength is attributed to the relaxation in residual stress by the condensation reaction of the PECVD $SiO_2$: this relaxation leads to increases in deformation energy due to residual stress and bond strength.