DOI QR코드

DOI QR Code

Study on the Mechanism and Modeling for Super-filling of High-Aspect-Ratio Features with Copper by Catalyst Enhanced Chemical Vapor Deposition Coupled with Plasma Treatment

플라즈마 처리와 결합된 Cu 촉매반응 화학기상증착법의 메커니즘과 고종횡비 패턴의 충진양상 전산모사에 대한 연구

  • Kim, Chang-Gyu (Department of Materials Science and Engineering, KAIST) ;
  • Lee, Do-Seon (Department of Materials Science and Engineering, KAIST) ;
  • Lee, Won-Jong (Department of Materials Science and Engineering, KAIST)
  • 김창규 (한국과학기술원 신소재공학과) ;
  • 이도선 (한국과학기술원 신소재공학과) ;
  • 이원종 (한국과학기술원 신소재공학과)
  • Received : 2011.02.10
  • Published : 2011.04.25

Abstract

The mechanism behind super-filling of high-aspect-ratio features with Cu by catalyst-enhanced chemical vapor deposition (CECVD) coupled with plasma treatment is described and the metrology required to predict the filling feasibility is identified and quantified. The reaction probability of a Cu precursor was determined as a function of substrate temperature. Iodine adatoms are deactivated by the bombardment of energetic particles and also by the overdeposition of sputtered Cu atoms during the plasma treatment. The degree of deactivation of adsorbed iodine was experimentally quantified. The quantified factors, reaction probability and degree of deactivation of iodine were introduced to the simulation for the prediction of the trench filling aspect by CECVD coupled with plasma treatment. Simulated results show excellent agreement with the experimental filling aspects.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. L. Schaper, S. Burkett, M. Gordon, L. Cai, Y. Liu, G. Jampana, and I. U. Abhulimen, 57th Electronic Components and Technology Conference Proceedings, p. 853 (2007).
  2. J. U. Knickerbocker, P. S. Andry, and L. P. Buchwalter, IBM J. Res. Develop. 49, 725 (2005).
  3. D. S. Tezcan, N. Pham, B. Majeed, P. D. Moor, W. Ruythooren, and K. Baert, 57th Electronic Components and Technology Conference Proceedings, p. 643 (2007).
  4. K. Takahashi, H. Terao, Y. Tomita, Y. Yamaji, M. Hoshino, T. Sato, T. Morifuji, M. Sunohara, and M. Bonkohara, Jpn. J. Appl. Phys. 40, 3032 (2001). https://doi.org/10.1143/JJAP.40.3032
  5. B. H. Cho, J. J. Yun, and W. J. Lee, Jpn. J. Appl. Phys. 46, 2768 (2007). https://doi.org/10.1143/JJAP.46.2768
  6. T. Rowbotham, J. Patel, T. Lam, I. U. Abhulimen, S. Burkett, L. Cai, and L. Schaper, J. Vac. Sci. Technol. B 24, 2460 (2006). https://doi.org/10.1116/1.2221313
  7. K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi, and D. P. Barkey,, J. Electrochem. Soc. 152, H173 (2005). https://doi.org/10.1149/1.2041047
  8. I. R. Kim, J. K. Park, Y. C. Chu, and J. P. Jung, Kor. J. Met. Mater 48, 667 (2010).
  9. E. S. Hwang and J. H. Lee, Chem. Mater. 12, 2076 (2000). https://doi.org/10.1021/cm990805+
  10. K. C. Shim, H.B. Lee, O. K. Kwon, H. S. Park, W. Koh, and S. W. Kang, J. Electrochem. Soc. 149, G109 (2002). https://doi.org/10.1149/1.1430230
  11. D. Josell, S. B. Kim, D. Wheeler, T. P. Moffat, and S. G. Pyo, J. Electrochem. Soc. 150, C368 (2003). https://doi.org/10.1149/1.1566960
  12. H. B. Lee, D. K. Kwak, and S. W. Kang, Electrochem. Solid-State Lett. 8, C39 (2005). https://doi.org/10.1149/1.1850393
  13. D. S. Lee and W. J. Lee, Jpn. J. Appl. Phys. 48, 076004 (2009). https://doi.org/10.1143/JJAP.48.076004
  14. S. G. Pyo, Met. Mater. Int. 14, 767 (2008). https://doi.org/10.3365/met.mat.2008.12.767
  15. H. B. Lee and Dr, Thesis, Department of Materials Science and Engineering, KAIST, Daejeon, Korea (2005).
  16. J. L. Lin and B. E. Bent, J. Phys. Chem. 96, 8529 (1992). https://doi.org/10.1021/j100200a059
  17. M. Fujinaga and N. Kotani, IEEE Trans. Electron. Devices 44, 226 (1997). https://doi.org/10.1109/16.557710
  18. G. A. Bird, Molecular Gas Dynamics, Oxford University Press, Oxford (1976).
  19. Y.-J. T. Lii and J. Jorne, J. Electrochem. Soc. 137, 2837 (1990). https://doi.org/10.1149/1.2087084