Bond Strength of Wafer Stack Including Inorganic and Organic Thin Films

무기 및 유기 박막을 포함하는 웨이퍼 적층 구조의 본딩 결합력

  • Kwon, Yongchai (Department of Chemical and Environmental Technology, Inha Technical Collage) ;
  • Seok, Jongwon (School of Mechanical Engineering, College of Engineering Chung-Ang University)
  • 권용재 (인하공업전문대학교 화공환경과) ;
  • 석종원 (중앙대학교 기계공학부)
  • Received : 2007.12.07
  • Accepted : 2008.03.05
  • Published : 2008.06.30


The effects of thermal cycling on residual stresses in both inorganic passivation/insulating layer that is deposited by plasma enhanced chemical vapor deposition (PECVD) and organic thin film that is used as a bonding adhesive are evaluated by 4 point bending method and wafer curvature method. $SiO_2/SiN_x$ and BCB (Benzocyclobutene) are used as inorganic and organic layers, respectively. A model about the effect of thermal cycling on residual stress and bond strength (Strain energy release rate), $G_c$, at the interface between inorganic thin film and organic adhesive is developed. In thermal cycling experiments conducted between $25^{\circ}C$ and either $350^{\circ}C$ or $400^{\circ}C$, $G_c$ at the interface between BCB and PECVD $ SiN_x $ decreases after the first cycle. This trend in $G_c$ agreed well with the prediction based on our model that the increase in residual tensile stress within the $SiN_x$ layer after thermal cycling leads to the decrease in $G_c$. This result is compared with that obtained for the interface between BCB and PECVD $SiO_2$, where the relaxation in residual compressive stress within the $SiO_2$ induces an increase in $G_c$. These opposite trends in $G_cs$ of the structures including either PECVD $ SiN_x $ or PECVD $SiO_2$ are caused by reactions in the hydrogen-bonded chemical structure of the PECVD layers, followed by desorption of water.

패시베이션 및 절연 목적으로 이용하는 플라즈마 화학기상증착(PECVD)법에 의해 증착된 무기막과 웨이퍼 간 본딩 접착제로 이용하는 유기 박막 적층면의, 열 순환에 의한 잔류 응력 및 본딩 결합력의 효과를 4점 굽힙 시험법과 웨이퍼 곡률 측정법에 의해 평가하였다. 무기막으로는 산화 규소막($SiO_2$)과 산화 질화막($SiN_x$)이, 유기 박막으로는 BCB(Benzocyclobutene)가 이용되었다. 이를 통해, 열 순환 동안 무기막과 유기막 사이에서의 잔류 응력과 본딩 결합력의 상관관계에 대한 모델식을 개발하였다. 최대 온도 350 및 $400^{\circ}C$에서 수행한 열 순환 공정에서, PECVD 산화 질화막과 BCB로 구성된 다층막에서, 본딩 결합력은 첫 번째 순환 공정 동안 감소한다. 이는 산화질화막 내 잔류인장응력의 증가가 다층막의 잔류응력에 의해 변형되는 에너지 및 본딩 결합력의 감소를 유도한다는 모델식의 예측과 일치하며, PECVD 산화 규소막내 잔류 압축 응력의 감소가 다층막의 잔류응력에 의해 변형되는 에너지 및 본딩 결합력 상승을 이끄는 산화 규소막과 BCB 구조의 본딩 결합력 결과와 비교된다. 이러한 산화 규소막과 산화 질화막을 포함한 다층막의 상반된 본딩 결합력은 증착 공정 후 막 내에 형성된 수소 결합이 고온 순환 공정 동안 축합 반응을 통해 더 밀집되어 인장응력을 형성하기 때문임을 알 수 있었다.



  1. Fan, A., Rahman, R., and Reif, R., "Copper Wafer Bonding", Electrochem. Solid-State Lett., 2(10), 534-536(2001)
  2. Davis, J. A., Venkatesan, R., Kaloyeros, A., Beylansky, M., Souri, S. J., Banerjee, K., Saraswat, K.C., Rahman, A., Reif, R., and Meindl, J. D., "Interconnect Limits on Gigascale Integration (GSI) in the 21st Century", Proc. IEEE, 89(3), 305-324(2001)
  3. Kwon, Y., Jindal, A., McMahon, J. J., Lu, J.-Q., Gutmann, R. J., and Cale, T. S., "Dielectric Glue Wafer Bonding for 3D ICs", Mater. Res. Soc. Symp. Proc., 766, 27-32(2003)
  4. Lu, J.-Q., Kwon, Y., Rajagopalan, G., Gupta, M., McMahon, J., Lee, K.-W., Kraft, R. P., Jindal, A., McDonald, J. F., Cale, T. S., Gutmann, R. J., Xu, B., Eisenbraun, E., Castracane, J., and Kaloyeros, A., "A Wafer-Scale 3D IC Technology Platform using Dielectric Bonding Glues and Copper Damascene Patterned Inter-Wafer Interconnects", 2002 IEEE Int'l Interconnect Technol. Conf., 78-80(2002)
  5. Kwon, Y., Seok, J., Lu, J.-Q., Cale, T. S., and Gutmann, R. J., "A Study on Wafer-Level 3D Integration Including Wafer Bonding using Low-k Polymeric Adhesive", Korean Chem. Eng. Res., 45(5), 446-472(2007)
  6. Kwon, Y., and Seok, J., "An Evaluation Process of Polymeric Adhesive Wafer Bonding for Vertical System Integration", Japanese Journal of Applied Physics Part 1, 44(6A), 3893-3902 (2005)
  7. Zhang, X., Chen, K.-S., Ghossi, R., Ayon, A. A., and Spearing, S. M., "Residual Stress and Fracture in Thick TEOS and Silane- Based PECVD Oxide Films", Sens. Actuators A, 91, 379-386 (2001)
  8. Thurn, J., and Cook, R. F., "Stress Hysteresis during Thermal Cycling of Plasma-Enhanced Chemical Vapor Deposited Silicon Oxide Films", J. Appl. Phys., 91(4), 1988-1992(2002)
  9. Hughey, M.P., and Cook, R.F., "Massive Stress Changes in PECVD Silicon Nitride Films on Thermal Cycling", Thin Solid Films, 460, 7-16(2004)
  10. Smith, D. L., Alimonda, A. S., Chen, C. C., Ready, S. E., and Wacker, B., "Mechanism of $SiN_xH_y$ Deposition from $NH_3-SiH_4$ Plasma", J. Electrochem. Soc., 137(2), 614-623(1990)
  11. Karabacak, T., Zhao, Y.-P., Wang, G.-C., and Lu, T.-M., "Growth Front Roughening in Silicon Nitride Films by PECVD", Phys. Rev. B, 66, 075329-1-075329-10(2002)
  12. Stoney, G. G., "The Tension of Metallic Films Deposited by Electrolysis", Proc. R. Soc. London, Ser. A, 82, 172-175(1909)
  13. Charalambides, P.G., Lund, J., Evans, A.G., and McMeeking, R.M., "A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces", J. Appl. Mech., 56(1), 77-82(1989)
  14. Kwon, Y., "Wafer Bonding for 3D Integration", Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY (2003)
  15. Sha, Y., Hui, C. Y., Kramer, E. J., Hahn, S. F., and Berglund, C.A., "Fracture Toughness and Failure Mechanism of Epoxy/ Rubber-Modified Polystyrene (HISP) Interfaces by Grafted Chains", Macromolecules, 29(13), 4728-4736(1996)
  16. Litteken, C. S., Stroband, S, and Dauskardt, R. H., "Residual Stress Effects on Plastic Deformation and Interfacial Fracture in Thin-Film Structures", Acta Materialia, 53(7), 1955-1961(2005)
  17. Kwon, Y., and Seok, J., Lu, J.-Q., Cale, T.S., and Gutmann, R.J., "A Study on the Effects of High Temperature Thermal Cycling on Bond Strength at the Interface between BCB and PECVD $SiO_2$ Layers", Korean Chem. Eng. Res., 46(2), 389-396(2008)
  18. Freund, L. B., and Suresh, S., Thin Film Materials - Stress, Defect Formation and Surface Evolution, (Cambridge University Press, Cambridge, 2003)
  19. Perrin, J., and Broekhuizen, T., "Surface Reaction and Recombination of the $SiH_3$ Radical on Hydrogrnated Amorphous Silicon", Appl. Phys. Lett., 50(8), 433-435(1987)
  20. Smith, D. L., Thin-Film Deposition: Principles and Practice (McGraw-Hill, New York, 1995)
  21. Buss, R. J., Ho, P., Breiland, W.G., and Coltrin, M.E., "Reactive Sticking Coefficient for Silane and Disilane on Polycrystalline Silicon", J. Appl. Phys., 63(8), 2808-2819(1988)