• 제목/요약/키워드: 포즈인식

검색결과 115건 처리시간 0.04초

3차원 인체 포즈 인식을 이용한 상호작용 게임 콘텐츠 개발 (Developing Interactive Game Contents using 3D Human Pose Recognition)

  • 최윤지;박재완;송대현;이칠우
    • 한국콘텐츠학회논문지
    • /
    • 제11권12호
    • /
    • pp.619-628
    • /
    • 2011
  • 일반적으로 비전기반 3차원 인체 포즈 인식 기술은 HCI(Human-Computer Interaction)에서 인간의 제스처를 전달하기 위한 방법으로 사용된다. 특수한 환경에서 단순한 2차원 움직임 포즈만 인식할 수 있는 2차원 포즈모델 기반 인식 방법에 비해 3차원 관절을 묘사한 포즈모델은 관절각에 대한 정보와 신체 부위의 모양정보를 선행지식으로 사용할 수 있어서 좀 더 일반적인 환경에서 복잡한 3차원 포즈도 인식할 수 있다는 장점이 있다. 이 논문은 인체의 3차원 관절 정보를 이용한 포즈 인식 기술을 인터페이스로 활용한 상호작용 게임 콘텐츠 개발에 관해 기술한다. 제안된 시스템에서 사용되는 포즈는 인체 관절 중 14개 관절의 3차원 위치정보를 이용해서 구성한 포즈 템플릿과 현재 사용자의 포즈를 비교해 인식된다. 이 방법을 이용하여 제작된 시스템은 사용자가 부가적인 장치의 사용 없이 사용자의 몸동작만으로 자연스럽게 게임 콘텐츠를 조작할 수 있도록 해준다. 제안된 3차원 인식 기술을 게임 콘텐츠에 적용하여 성능을 평가한다. 향후 다양한 환경에서 더욱 강건하게 포즈를 인식할 수 있는 연구를 수행할 계획이다.

그림모델과 파티클필터를 이용한 인간 정면 상반신 포즈 인식 (Pictorial Model of Upper Body based Pose Recognition and Particle Filter Tracking)

  • 오치민;;김민욱;이칠우
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.186-192
    • /
    • 2009
  • 본 논문은 비전을 이용한 인간 정면 상반신 포즈를 인식 방법에 대해서 기술한다. 일반적으로 HCI(Human Computer Interaction)와 HRI(Human Robot Interaction)에서는 인간이 정면을 바라볼 때 얼굴, 손짓으로 의사소통 하는 경우가 많기 때문에 본 논문에서는 인식의 범위를 인간의 정면 그리고 상반신에 대해서만 한정한다. 인간 포즈인식의 주요 두 가지 어려움은 첫째 인간은 다양한 관절로 이루어진 객체이기 때문에 포즈의 자유도가 높은 문제점 때문에 모델링이 어렵다는 것이다. 둘째는 모델링된 정보와 영상과의 매칭이 어려운 것이다. 이를 해결하기 위해 본 논문에서는 모델링이 쉬운 그림모델(Pictorial Model)을 이용해 인체를 다수 사각형 파트로 모델링 하였고 이를 이용해 주요한 상반신 포즈를 DB화 해 인식한다. DB 포즈로 표현되지 못하는 세부포즈는 인식된 주요 포즈 파라미터로 부터 파티클필터를 이용해 예측한 다수 파티클로부터 가장 높은 사후분포를 갖는 파티클을 찾아 주요 포즈를 업데이트하여 결정한다. 따라서 주요한 포즈 인식과 이를 기반으로 한 세부 포즈를 추적하는 두 단계를 통해 인체 정면 상반신 포즈를 정확하게 인식 할 수 있다.

  • PDF

신체 부분 포즈를 이용한 깊이 영상 포즈렛과 제스처 인식 (Depth Image Poselets via Body Part-based Pose and Gesture Recognition)

  • 박재완;이칠우
    • 스마트미디어저널
    • /
    • 제5권2호
    • /
    • pp.15-23
    • /
    • 2016
  • 본 논문에서는 신체 부분 포즈를 이용한 깊이 영상 포즈렛과 제스처를 인식하는 방법을 제안한다. 제스처는 순차적인 포즈로 구성되어 있기 때문에, 제스처를 인식하기 위해서는 시계열 포즈를 획득하는 것에 중점을 두고 있어야 한다. 하지만 인간의 포즈는 자유도가 높고 왜곡이 많기 때문에 포즈를 정확히 인식하는 것은 쉽지 않은 일이다. 그래서 본 논문에서는 신체의 전신 포즈를 사용하지 않고 포즈 특징을 정확히 얻기 위해 부분 포즈를 사용하였다. 본 논문에서는 16개의 제스처를 정의하였으며, 학습 영상으로 사용하는 깊이 영상 포즈렛은 정의된 제스처를 바탕으로 생성하였다. 본 논문에서 제안하는 깊이 영상 포즈렛은 신체 부분의 깊이 영상과 해당 깊이 영상의 주요 3차원 좌표로 구성하였다. 학습과정에서는 제스처를 학습하기 위하여 깊이 카메라를 이용하여 정의된 제스처를 입력받은 후, 3차원 관절 좌표를 획득하여 깊이 영상 포즈렛이 생성되었다. 그리고 깊이 영상 포즈렛을 이용하여 부분 제스처 HMM을 구성하였다. 실험과정에서는 실험을 위해 깊이 카메라를 이용하여 실험 영상을 입력받은 후, 전경을 추출하고 학습된 제스처에 해당하는 깊이 영상 포즈렛을 비교하여 입력 영상의 신체 부분을 추출한다. 그리고 HMM을 적용하여 얻은 결과를 이용하여 제스처 인식에 필요한 부분 제스처를 확인한다. 부분 제스처를 이용한 HMM을 이용하여 효과적으로 제스처를 인식할 수 있으며, 관절 벡터를 이용한 인식률은 약 89%를 확인할 수 있었다.

포즈 인식에서 효율적 특징 추출을 위한 3차원 데이터의 차원 축소 (3D Data Dimension Reduction for Efficient Feature Extraction in Posture Recognition)

  • 경동욱;이윤리;정기철
    • 정보처리학회논문지B
    • /
    • 제15B권5호
    • /
    • pp.435-448
    • /
    • 2008
  • 사용자 포즈의 3차원 데이터 생성을 통한 3차원 포즈 인식은 2차원 포즈 인식의 문제점을 해결하기 위해서 많이 연구되고 있지만, 3차원 표면 데이터의 방대한 양으로 포즈 인식에서 중요한 특징 추출(feature extraction)이 어렵고 수행 시간이 많이 걸리는 문제점을 가지고 있다. 본 논문에서는 3차원 포즈 인식의 두 가지 문제점인 특징 추출의 어려움과 느린 처리속도를 개선하기 위해서 3차원 형상복원 기술로 모델의 3차원 표면 점들로 구성된 데이터를 2차원 데이터로 변환하는 차원 축소(dimension reduction) 방법을 제안한다. 실린더형 외곽점을 이용한 메쉬없는 매개변수화(meshless parameterization) 방법은 방대한 데이터인 3차원 포즈 데이터를 2차원 데이터로 변환하여 특징 추출과 매칭과정의 연산 속도를 향상 시키며, 특징 추출의 효율성 검증을 위해 간단한 환경에서 실험이 가능한 손 포즈 인식 및 인간 포즈 인식에 적용하였다.

포즈 인식을 이용한 가상 비행 체험 콘텐츠 (Virtual Flight Experiment Contents using Pose Recognition)

  • 박재완;조병수;이칠우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.355-358
    • /
    • 2012
  • 본 논문은 사용자의 포즈를 인터페이스로 사용하는 가상 비행 체험 콘텐츠에 대하여 기술한다. 사용자의 포즈를 인식하기 위해서 제스처를 구성하는 상반신의 포즈를 식별하여야 한다. 본 논문에서 기술한 콘텐츠는 한정된 공간에서 사용자의 움직임을 인식하고 가상공간에 아바타를 이용하여 표현하고 있다. 그러므로 사용자는 가상공간에서 정의된 포즈를 사용하여 가상 비행을 체험할 수 있고 인식된 포즈는 OS-Value 이벤트를 이용하여 가상 비행 체험 콘텐츠에서 인터페이스로 활용이 가능하다.

SAR 영상 목표물 포즈 각도 추정을 위한 딥 콘볼루션 뉴럴 네트워크 (Convolutional neural network for Azimuth estimation with SAR)

  • 염광영;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2017년도 하계학술대회
    • /
    • pp.99-101
    • /
    • 2017
  • 최근 딥러닝을 이용한 SAR 영상의 목표물을 인식하는 알고리즘이 괄목할만한 성능을 보여주었다. 이러한 알고리즘들은 포즈 각도 정보를 무시한 채 목표물의 종류를 추정하는 것에만 초점을 맞춘다. 포즈 각도 추정 알고리즘은 단지 SAR 영상 목표물 인식 알고리즘의 전처리 과정으로 연구되었다. 하지만 감시 시스템에서, 목표물이 향하고 있는 방향을 추정하는 것 또한 중요하다. 먼저, 포즈 각도 추정을 통하여 적의 전술 배치를 계획을 추정할 수 있다. 또한 목표물이 아군 쪽을 바라보면 큰 위협이 되는데, 포즈 각도 추정을 통하여 이러한 정보를 알 수 있다. 따라서 본 논문은 목표물이 향하고 방향을 추정할 수 있는 콘볼루션 네트워크를 고안하였다. 네트워크를 학습시키기 위하여 SAR 영상의 목표물의 포즈 각도를 양자화하여 포즈 각도 label 을 구성하였다. 또한 이러한 포즈 각도 추정을 정제하는 알고리즘을 고안하였고 이는 보다 정확한 포즈 각도 추정을 가능하게 하였다. 그 결과, 제안된 네트워크는 포즈 각도 추정에 높은 정확도를 보여준다.

  • PDF

실루엣 영상을 이용한 삼차원 인체 포즈인식 (3D Pose Recognition using Body Silhouette Image)

  • 오치민;김민욱;이칠우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.11-12
    • /
    • 2008
  • 본 논문은 이차원 영상에 투영된 삼차원 인체의 포즈를 인식하기 위하여 이차원 영상에 투영된 인체의 실루엣 정보를 이용하였다. 인체는 삼차원 공간에서 움직이므로 이차원 영상으로 모든 정보를 알아내기에는 부족한 면이 있다. 따라서 본 논문에서는 인체 포즈의 주시 방향을 결정한 후 인체의 실루엣 영상 Convex-hull 특징점 정보를 이용하여 인체의 삼차원 포즈를 인식하였다. 인체의 포즈는 PCA로 차원을 축소하였으며 Diffusion Distance로 데이터베이스의 포즈모델 중 가장 가까운 모델을 선택하였다.

가상 놀이 공간 인터페이스를 위한 HMM 기반 상반신 제스처 인식 (HMM-based Upper-body Gesture Recognition for Virtual Playing Ground Interface)

  • 박재완;오치민;이칠우
    • 한국콘텐츠학회논문지
    • /
    • 제10권8호
    • /
    • pp.11-17
    • /
    • 2010
  • 본 논문은 HMM기반의 상반신 제스처 인식에 대하여 연구하였다. 공간상의 제스처를 인식하기 위해서는 일단 제스처를 구성하고 있는 포즈에 대한 구분이 우선되어야 한다. 인터페이스에 사용되는 포즈를 구분하기 위해서 정면과 옆면에 설치한 적외선 카메라 두 대를 실험에 사용하였다. 그리고 각각의 적외선 카메라에서 하나의 포즈에 대한 정면 포즈와 옆면 포즈로 나눠서 획득한다. 획득한 적외선 포즈 영상은 SVM의 비선형 RBF 커널 함수를 이용하여 구분하였다. RBF 커널을 사용하면 비선형적 분류 포즈들간의 오분류 현상을 구분할 수 있다. 이렇게 구분된 포즈들의 연속은 HMM의 상태천이행렬을 이용하여 제스처로 인식된다. 인식된 제스처는 OS Value에 매핑하여 기존의 Application에 적용할 수 있다.

얼굴의 다양한 포즈 및 표정의 변환에 따른 얼굴 인식률 향상에 관한 연구 (A Study on Improvement of Face Recognition Rate with Transformation of Various Facial Poses and Expressions)

  • 최재영;황보 택근;김낙빈
    • 인터넷정보학회논문지
    • /
    • 제5권6호
    • /
    • pp.79-91
    • /
    • 2004
  • 다양한 얼굴 포즈 검출 및 인식은 매우 어려운 문제로서, 이는 특징 공간상의 다양한 포즈의 분포가 정면 영상에 비해 매우 흩어져있고 복잡하기 때문이다. 이에 본 논문에서는 기존의 얼굴 인식 방법들이 제한 사항으로 두었던 입력 영상의 다양한 포즈 및 표정에 강인한 얼굴 인식 시스템을 제안하였다. 제안한 방법은 먼저, TLS 모델을 사용하여 얼굴 영역을 검출한 뒤, 얼굴의 구성요소를 통하여 얼굴 포즈를 추정한다. 추정된 얼굴 포즈는 3차원 X-Y-Z축으로 분해되는데, 두 번째 과정에서는 추정된 벡터를 통하여 만들어진 가변 템플릿과 3D CAN/DIDE모델을 이용하여 얼굴을 정합한다 마지막으로 정합된 얼굴은 분석된 포즈와 표정에 의하여 얼굴 인식에 적합한 정면의 정규화 된 얼굴로 변환된다. 실험을 통하여 얼굴 검출 모델의 사용과 포즈 추정 방법의 타당성을 보였으며, 포즈 및 표정 정규화를 통하여 인식률이 향상됨을 확인하였다.

  • PDF

포즈 변화에 강인한 얼굴 인식 (Face Recognition Robust to Pose Variations)

  • 노진우;문인혁;고한석
    • 대한전자공학회논문지SP
    • /
    • 제41권5호
    • /
    • pp.63-69
    • /
    • 2004
  • 본 논문에서는 포즈 변화에 강인한 얼굴 인식을 위하여 원통 모델을 이용하는 방법을 제안한다. 얼굴 모양이 원통형이라는 가정 하에 입력 영상으로부터 대상의 포즈를 예측하고, 예측된 포즈 각도만큼 포즈 변환을 실시하여 정면 얼굴 영상을 획득한다. 이렇게 획득한 정면 영상을 얼굴 인식에 적용함으로써 얼굴 인식률을 향상시킬 수 있다. 실험 결과, 포즈 변환을 통하여 인식률이 61.43%에서 93.76%로 향상되었음을 볼 수 있었으며, 보다 복잡한 3차원 얼굴 모델을 이용한 결과와 비교하였을 때 비교적 양호한 인식률을 갖는 것을 확인하였다.