Abstract
In this paper, we propose HMM-based upper-body gesture. First, to recognize gesture of space, division about pose that is composing gesture once should be put priority. In order to divide poses which using interface, we used two IR cameras established on front side and side. So we can divide and acquire in front side pose and side pose about one pose in each IR camera. We divided the acquired IR pose image using SVM's non-linear RBF kernel function. If we use RBF kernel, we can divide misclassification between non-linear classification poses. Like this, sequences of divided poses is recognized by gesture using HMM's state transition matrix. The recognized gesture can apply to existent application to do mapping to OS Value.
본 논문은 HMM기반의 상반신 제스처 인식에 대하여 연구하였다. 공간상의 제스처를 인식하기 위해서는 일단 제스처를 구성하고 있는 포즈에 대한 구분이 우선되어야 한다. 인터페이스에 사용되는 포즈를 구분하기 위해서 정면과 옆면에 설치한 적외선 카메라 두 대를 실험에 사용하였다. 그리고 각각의 적외선 카메라에서 하나의 포즈에 대한 정면 포즈와 옆면 포즈로 나눠서 획득한다. 획득한 적외선 포즈 영상은 SVM의 비선형 RBF 커널 함수를 이용하여 구분하였다. RBF 커널을 사용하면 비선형적 분류 포즈들간의 오분류 현상을 구분할 수 있다. 이렇게 구분된 포즈들의 연속은 HMM의 상태천이행렬을 이용하여 제스처로 인식된다. 인식된 제스처는 OS Value에 매핑하여 기존의 Application에 적용할 수 있다.