• 제목/요약/키워드: 평균회귀

검색결과 2,326건 처리시간 0.022초

Power 모형을 이용한 서울지점 비정상성 빈도해석 (Nonstationary Frequency Analysis at Seoul Using a Power Model)

  • 이기춘;김광섭;최규현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.461-461
    • /
    • 2012
  • 본 연구는 서울 지점의 목표연도(2040, 2070, 2100년)별 재현기간에 따른 확률강수량을 산정하기 위해 지속시간 24시간에 대한 연 최대 강수량 자료를 구축하여 비정상성 빈도해석을 수행하였다. 연 최대강수량 자료를 이용해 초기 20년을 기준으로 1년씩 추가한 연 최대 강수량 누적 자료를 구축한 후, 누적 기간별 자료의 평균, 위치매개변수, 축척매개변수를 산정하였다. Gumbel 분포를 이용해 비정상성 빈도해석을 실시하였으며, 각 매개변수의 경우 확률가중모멘트법을 이용해 산정하였다. 산정된 누적평균 강수량과 연도와의 선형회귀분석을 실시한 방법뿐만 아니라 서울 지점이 속한 한강유역의 전 지점들을 이용한 유역의 누적평균 강수량 자료에 대하여 연도와의 Logsitic 회귀분석 및 Power Model을 이용해 서울 지점의 목표연도별 누적평균 강수량을 산정하였고 이를 통해 목표연도별 위치매개변수 및 축척매개변수를 구해 목표연도별 재현기간에 따른 확률강수량을 산정하였다. 선형회귀분석을 이용한 비정상성 빈도해석의 경우, 목표연도가 증가함에 따라 선형적인 증가에 의해 매우 높은 누적평균 강수량이 나타나 확률강수량의 경우에도 정상성임을 가정한 확률강수량에 비해 매우 높게 나타나 타당한 확률강수량이라 함에 한계가 있음을 보였다. 유역의 평균거동과 Logistic 회귀분석을 실시하여 확률강수량을 산정하였을 때에는, 선형 회귀분석에 비해 정상성임을 가정한 확률강수량보다 크게 증가하지 않고 비교적 안정적인 증가가 나타났다. 하지만 Logistic 회귀분석을 이용한 누적평균 강수량 산정에 있어서 목표연도 2040년에 도달하기 전에 미리 수렴하는 형태를 보여 모든 목표연도의 확률강수량이 동일한 값을 가지는 한계가 나타났다. 한강 유역의 평균거동과 Power Model을 이용한 비정상성 빈도해석의 경우, 선형회귀분석 및 Logistic 회귀분석을 통한 비정상성 빈도해석에서 나타난 문제점을 보완할 수 있는 확률강수량이 나타남을 보였다.

  • PDF

계층형 주기적 자기회귀 이동평균 모형의 추정 (Estimation of Layered Periodic Autoregressive Moving Average Models)

  • 이성덕;김정군;김선우
    • Communications for Statistical Applications and Methods
    • /
    • 제19권3호
    • /
    • pp.507-516
    • /
    • 2012
  • 시계열의 상관구조가 시점에 의존하며 주기적인 상관성을 보이는 계절성 시계열 자료에 대한 시계열 모형들이 비교 분석된다. 주기적 자기회귀이동평균 모형을 소개하고, 실증분석으로 주기적 상관성을 지닌 스위스 Arosa 지방의 성층권 오존 월별 시계열에 계층형 모형인 주기적 자기회귀이동평균 모형과 계절 누적자기회귀이동 평균 모형의 적합을 통하여 주기적 자기회귀이동평균 모형의 우월성을 비교한다.

비선형 평균 일반화 이분산 자기회귀모형의 추정 (Estimation of nonlinear GARCH-M model)

  • 심주용;이장택
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.831-839
    • /
    • 2010
  • 최소제곱 서포트벡터기계는 비선형회귀분석과 분류에 널리 쓰이는 커널기법이다. 본 논문에서는 금융시계열자료의 평균 및 변동성을 추정하기 위하여 평균의 추정 방법으로는 가중최소제곱 서포트벡터기계, 변동성의 추정 방법으로는 최소제곱 서포트벡터기계를 사용하는 비선형 평균 일반화 이분산 자기회귀모형을 제안한다. 제안된 모형은 선형 일반화 이분산 자기회귀모형 및 선형 평균 일반화 이분산 자기회귀모형보다 더 나은 추정 능력을 가진다는 것을 실제자료의 추정을 통하여 보였다.

데이터 스크린 기법을 이용한 연강수량의 통계적 특성 분석 (Analysis of Statistical Characteristics of Annual Precipitation in Korea Using Data Screeening Technique)

  • 정세진;임가균;김병식
    • 한국방재안전학회논문집
    • /
    • 제13권3호
    • /
    • pp.15-28
    • /
    • 2020
  • 본 논문에서는 미계측 유역에 적용할 수 있는 갈수지수 산정 회귀모형을 개발하고자 하였다. 30개의 중권역 유역을 대상으로 국가수자원종합관리시스템에서 제공하는 장기유출자료를 이용하여 평균 갈수량과 평균저수량, 지속기간별 빈도별 갈수지수를 산정하였으며 이를 유역특성인자 18개와 기상특성인자 3개와의 상관 분석을 통하여 최종적으로 유역면적, 유역 평균 표고, 유역 평균 경사, 수계 밀도, 유출곡선지수, 연증발산량, 연강수량을 선정하여 다중회귀분석을 수행하여 갈수지수 회귀모형을 개발하였다. 개발된 회귀모형을 평가하기 위하여 10개의 검증유역을 미계측 유역으로 간주하여 평균제곱근오차(RMSE) 와 평균절대오차(MAE)를 이용하여 정확도를 추정하였다. 또한 기존의 평균갈수량 산정 회귀모형과의 비교를 통하여 본 논문에서 개발한 모형의 우수성을 검토하였다. 기존의 미계측 유역의 평균 갈수량 회귀모형과 비교·분석에서 보다 우수한 결과를 나타내었는데 이는 기존의 회귀모형보다 다양한 유역 특성인자와 수문특성인자를 고려하여 회귀모형을 개발하였기 때문인 것으로 판단된다.

Quantile Regression을 활용한 우리나라 극치강수량 경향성 분석 (Trend analysis of extream precipitation in Korea using Quantile Regression)

  • 소병진;권현한;박래건
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.369-370
    • /
    • 2012
  • 일반적으로 회귀분석의 최적화는 평균적인 개념을 확장하여 사용되어지고 있다. 평균은 관찰값들에 관한 모든 정보와 관련된 통계량으로써 많은 연구에 이용되어지고 있다. 정규분포를 이루는 모집단의 경우 평균을 사용한 추정이 바람직하지만, 이상치로 인한 분포의 꼬리가 두꺼워지는 경우 중위수(median)를 사용하는 것이 바람직하다고 알려져 있다. 강수량의 분포형태는 꼬리(tail)가 두꺼운 왜곡된 형태를 갖고 있으므로 robust 통계량인 Quantile을 이용한 강수량의 분석 및 평가를 실시하였다. 본 연구에서는 Quantile에 따른 회귀선의 변화를 이용하여 강수량의 경향성을 평가하고, 극치강수량의 변화를 보여줄 수 있는 Quantle값을 추출해 보고자 한다. 또한 bootstrap 방법을 이용하여 Quantile에 따른 회귀계수의 신뢰구간을 분석하여 회귀인자의 신뢰성을 평가하였다. 본 연구에서 적용한 Quantile Regression 기법은 회귀계수의 추정에 있어서 회귀인자의 신뢰성을 Quantile-회귀계수 그래프를 통해 분석할 수 있으며, 이상값의 영향을 저감시키는 평균과 달리 이상값의 영향을 효과적으로 분리 및 재현시킬 수 있어 극치값에 따른 변화를 효과적으로 평가할 수 있으며, robust 통계량의 특징인 분산이 적은 안정적인 추정량을 확보할 수 있다.

  • PDF

오차항이 이동평균과정을 따르는 회귀모형에서 회귀계수의 효율적 추정에 관한 연구 (Efficient Estimation of Regression Coefficients in Regression Model with Moving Average Process)

  • 송석현;이종협;김기환
    • 응용통계연구
    • /
    • 제12권1호
    • /
    • pp.109-124
    • /
    • 1999
  • 일반적으로 오차항이 자기상관되어 있는 선형회귀 모형에서는 회귀계수에 대한 보통최소제곱추정량이 효율적이지 못 하다고 알려져 있다. 그러나 이러한 일반화선형회귀모형에서 독립변수의 형태에 따라서는 OLSE의 사용 가능성을 제시하는 모형이 있다. 본 연구에서는 오차항이 일차 이동평균 과정을 따르는 선형회귀모형에서 여러 추정량들 (GLSE, APX, MAPX)에 대한 OLSE의 상대효율함수를 유도하고 비교 분석하고자 한다. 특히 소표본에서 정확한 상대효율값을 구하여 OLSE의 효율성이 크게 떨어지지 않거나 효율성이 나은 회귀모형들을 제시한다.

  • PDF

최적 시계열 모형에 기초한 오존주의보 날짜 예측 (Predicting ozone warning days based on an optimal time series model)

  • 박철용;김현일
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권2호
    • /
    • pp.293-299
    • /
    • 2009
  • 이 논문에서는 대구 두 개 동의 시간별 오존농도를 예측하는 모형으로 회귀, 자기회귀누적이동평균, 자기회귀누적이동평균 오차를 가지는 회귀 같은 선형모형들을 고려하였다. 평균제곱오차제곱근에 근거하여 보았을 때 한 개 동에서는 자기회귀누적이동평균 모형이 최적의 모형으로 선택되었고, 다른 동에서는 자기회귀누적이동평균 오차를 가지는 회귀 모형이 최적 모형으로 선택되었다. 이 최적의 모형으로부터 나온 잔차들의 변동석 분석을 수행하였는데 이를 통해 120 ppb를 넘는 오존 주의보 날짜를 예측하였다. 2000년에서 2003년까지의 훈련용 자료에 근거하여 보았을 때 잔차값의 경계값으로 35 ppb를 잡았을 때 오존주의보 날짜를 예측하는데 좋은 결과를 보였다. 하나의 동에서는 2004년의 오존주의보가 발령된 이틀 중 하루와 나머지 주의보가 발령되지 않은 364일을 모두 정확히 예측하였다. 다른 동에서는 2004년의 오존주의보가 발령된 하루와 주의보가 발령되지 않은 365일을 모두 정확히 예측하였다.

  • PDF

평균회귀확률과정을 이용한 2요인 사망률 모형 (A Two Factor Model with Mean Reverting Process for Stochastic Mortality)

  • 이강수;조재훈
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.393-406
    • /
    • 2015
  • 본 논문은 2요인(two-factor) 사망률 모형에 평균회귀모형(mean reverting process)을 적용하여 2요인의 확률적 변동을 모형화하여 사망률리스크(mortality risk)와 장수리스크(longevity risk)를 분석하였다. 최근 고령사회로 진입한 국가들에서 사망률 개선의 둔화가 관측되고 있는 시점에서 기존의 선형증가 또는 감소의 사망률 개선 모형을 보완함에 그 목적을 두었다. 영국의 1991~2015년 사망률 자료를 이용하여 제시한 모형의 모수를 메트로폴리스 알고리듬을 이용해 추정하였고 추정된 모수 값을 이용하여 다수 시뮬레이션을 통하여 장기간의 미래 사망률 예측값을 계산하였다. 평균회귀 모형의 특성으로 인해 약 60년의 시간이 지난 뒤부터는 사망률 개선이 거의 사라져 사망률이 일정한 값에 근접하였다. 사망률 개선이 둔화되는 현상이 관측되는 특정 집단(국가, 사회)의 경우 2요인 평균회귀 모형은 장기간 사망률 예측방법의 대안으로 간주될 것으로 기대되며, 모형의 응용으로서 평균회귀율의 추정결과로부터 사망률 개선의 속도를 계량화하는 기준을 제시하였다. 끝으로, 2014년~2040 기간의 사망률 예측값을 이용하여 25년 만기 장수채권의 발행가격을 산출하였다.

주가시계열에 대한 확률미분방정식(確率微分方程式)의 모수(母數) 추정(推定)과 자본시장의 운동법칙(運動法則)

  • 이일균
    • 재무관리연구
    • /
    • 제15권2호
    • /
    • pp.279-337
    • /
    • 1998
  • 이 논문에서는 주가가 확률과정, 즉 확률미분방정식에 의하여 생성되는가를 검정하고 주가의 운동법칙을 규명한다. 일별종합주가지수가 양수의 완전시계열상관을 갖고 있으며, 더욱이 3년 정도의 시차까지 의미있는 시계열상관을 갖고 있음이 발견되었다. 수익률과 가격변화의 시계열상관도 존재하고 시계열은 정상성(定常性)을 갖고 있다. 마팅게일에 의하여 주가가 생성되고있지 않음이 밝혀졌다. 한국증권거래소에서 계산하고 있는 일별 종합주가지수를 포함한 41개 산업별 지수를 사용하여 자본시장의 운동법칙을 규명하기 위하여 가장 많이 이용하고 있는 세개의 확률미분방정식을 검정하였다. 각 주가지수들이 온스타인 울렌벡 브라운 운동과정과 평균회귀과정을 따르지 않고 있다는 것이 발견되었다. 그러나 주가가 편류를 갖는 일반 기하 브라운 운동과정에 의하여 생성되고 있음이 검정을 통하여 확인되었다. 평균회귀과정에 의하여 주가가 생성되지 않는다는 발견은 의외라 할 수 있다. 주가가 온스타인 울렌벡 과정을 따르지 않는다는 것은 주가가 제 1계 정상적 자기회귀과정이 아니라는 것을 의미한다. 일별종합주가지수는 제 4계 자기회귀과정에 의하여 생성된다. 가격변화와 수익률의 생성함수는 제 4계 자기회귀과정이다. 종합주가지수의 제 1계 시계열상관계수는 1이다. 상당히 큰 시차를 갖을 때까지 시계열상관이 대략적으로 1을 유지하고 있다. 따라서 지수가 마팅게일을 따르고 있지 않다. 이 점은 가격변화와 수익률에 있어서도 유사하다. 가격변화, 수익률, 대수수익률의 제 1계 시계열상관이 0.1로 유의적이다. 따라서 수익도 마팅게일 과정을 따르고 있지 않다. 증권가격은 세 번에 걸쳐 구조의 번화가 발생하였다. 구조의 변화가 발생할 때마다 평균가격이 상승하였다. 이와 같은 현상은 장기적 기대가격이 미지일 가능성이 배제되지 않는다. 단기적 기대 주가가 알려진 반면 장기적 기대 주가가 미지라면 평균회귀과정은 장기적 기대주가로 회귀하고 있는 과정이므로 장기기대 주가의 미지성이 평균회귀 과정의 기각을 유도하게 된다. 우리나라의 투자자들은 무위험자산과 위험을 동시에 고려하여 투자활동을 전개하고 있음이 발견되었다. 선형의 효용함수를 갖는 위험중립적 태도의 투자자가 아니다. 위험기피형 효용함수 아래에서 투자활동을 수행하고 있는 합리적 투자자들이라 할 수 있다. 뿐 만 아니라 자신의 평생에 걸친 소비를 소비가 이루어지는 각 기마다 가급적 일정하게 하는 소비행동을 목표로 삼고 소비와 투자에 대한 의사결정을 내리고 있음이 실증분석을 통하여 밝혀졌다. 투자자들은 무위험 자산과 위험성 자산을 동시에 고려하여 포트폴리오를 구성하는 투자활동을 행동에 옮기고 있다.

  • PDF

증권시장에서 형성되는 실수적분과정 : 분수적분과정, 무작위행보와 평균회귀과정 (Fractionally Integrated Processes in Securities Markets)

  • 이일균
    • 재무관리연구
    • /
    • 제19권2호
    • /
    • pp.159-185
    • /
    • 2002
  • 한 시계열이 비정상적과정에 의해 생성될 때 이 시계열의 정상성을 확보하기 위하여 시계열의 차분을 수행한다. 이 시계열에 I(1)을 적용하여도 정상적과정이 되지 못하는 경우가 존재하고 있다. 그러면 이 시계열은 과도한 차분과정을 거치게 된다. 따라서 차분모수 d는 0

  • PDF