• Title/Summary/Keyword: 평균선량

Search Result 734, Processing Time 0.034 seconds

A Feasibility Study on Using Neural Network for Dose Calculation in Radiation Treatment (방사선 치료 선량 계산을 위한 신경회로망의 적용 타당성)

  • Lee, Sang Kyung;Kim, Yong Nam;Kim, Soo Kon
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.55-64
    • /
    • 2015
  • Dose calculations which are a crucial requirement for radiotherapy treatment planning systems require accuracy and rapid calculations. The conventional radiotherapy treatment planning dose algorithms are rapid but lack precision. Monte Carlo methods are time consuming but the most accurate. The new combined system that Monte Carlo methods calculate part of interesting domain and the rest is calculated by neural can calculate the dose distribution rapidly and accurately. The preliminary study showed that neural networks can map functions which contain discontinuous points and inflection points which the dose distributions in inhomogeneous media also have. Performance results between scaled conjugated gradient algorithm and Levenberg-Marquardt algorithm which are used for training the neural network with a different number of neurons were compared. Finally, the dose distributions of homogeneous phantom calculated by a commercialized treatment planning system were used as training data of the neural network. In the case of homogeneous phantom;the mean squared error of percent depth dose was 0.00214. Further works are programmed to develop the neural network model for 3-dimensinal dose calculations in homogeneous phantoms and inhomogeneous phantoms.

Radiological Characterization of the High-sensitivity MOSFET Dosimeter (고감도 MOSFET 선량계 방사선학적 특성 연구)

  • Cho Sung Koo;Kim Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.215-219
    • /
    • 2004
  • Due to their excellence for the high-energy therapy range of photon beams, researchers show increasing interest in applying MOSFET dosimeters to low- and medium-energy applications. In this energy range, however, MOSFET dosimeter is complicated by the fact that the interaction probability of photons shows significant dependence on the atomic number, Z, due to photoelectric effect. The objective of this study is to develop a very detailed 3-dimensional Monte Carlo simulation model of a MOSFET dosimeter for radiological characterizations and calibrations. The sensitive volume of the High-Sensitivity MOSFET dosimeter is very thin (1 ${\mu}{\textrm}{m}$) and the standard MCNP tallies do not accurately determine absorbed dose to the sensitive volume. Therefore, we need to score the energy deposition directly from electrons. The developed model was then used to study various radiological characteristics of the MOSFET dosimeter. the energy dependence was quantified for the energy range 15 keV to 6 MeV; finding maximum dependence of 6.6 at about 40 keV. A commercial computer code, Sabrina, was used to read the particle track information from an MCNP simulation and count the tracks of simulated electrons. The MOSFET dosimeter estimated the calibration factor by 1.16 when the dosimeter was at 15 cm depth in tissue phantom for 662 keV incident photons. Our results showed that the MOSFET dosimeter estimated by 1.11 for 1.25 MeV photons for the same condition.

  • PDF

Survey of CT Practice and Collective Effective Dose Estimation (CT검사건수 및 CT검사에 의한 집단 실효선량의 추정)

  • Lee, Man-Koo;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.231-237
    • /
    • 2010
  • Computed tomography (CT) has been established as an important diagnostic tool in clinical medicine and has become a major source of medical exposure. A nationwide survey regarding CT examinations was carried out in 2007. Thanks to the appeasement policy regulating the import of CT scanners, there are 1,825 CT scanners across the country as of the end of March 2010, which means that we have 36.8 CT scanners per one million people. The annual number of examinations was 3.29 million, the number of examinations per 1000 population was 68. The most part of examinations was abdomen and pelvis. and the collective effective dose was in these parts. The effective dose per one population was evaluated as 0.952 mSv.

Verification of skin dose according to the location of tumor in Tomotherapy (토모테라피 시 종양의 위치에 따른 피부선량 검증)

  • Yoon, Bo Reum;Park, Su Yeon;Park, Byoung Suk;Kim, Jong Sik;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.273-280
    • /
    • 2014
  • Purpose : To verify the skin dose in Tomotherapy-based radiation treatment according to the change in tumor locations, skin dose was measured by using Gafchromic EBT3 film and compared with the planned doses to find out the gap between them. Materials and Methods : In this study, to measure the skin dose, I'm RT Phantom(IBA Dosimetry, Germany) was utilized. After obtaining the 2.5mm CT images, tumor locations and skin dose measuring points were set by using Pinnacle(ver 9.2, Philips Medical System, USA). The tumor location was decided to be 5mm and 10mm away from surface of the phantom and center. Considering the attenuation of a Tomo-couch, we ensured a symmetric placement between the ceiling and floor directions of the phantom. The measuring point of skin doses was set to have 3mm and 5mm thickness from the surface. Measurement was done 3 times. By employing TomoHD(TomoHD treatment system, Tomotherapy Inc., Madison, Wisconsin, USA), we devised Tomotherapy plans, measured 3 times by inserting Gafchromic EBT3 film into the phantom and compared the measurement with the skin dose treatment plans. Results : The skin doses in the upper part of the phantom, when the tumor was located in the center, were found to be 7.53 cGy and 7.25 cGy in 5mm and 3mm respectively. If placed 5mm away from the skin in the ceiling direction, doses were 18.06 cGy and 16.89 cGy; if 10mm away, 20.37 cGy and 18.27 cGy, respectively. The skin doses in the lower part of the phantom, when the tumor was located in the center, recorded 8.82 cGy and 8.29 cGy in 5mm and 3mm, each; if located 5mm away from the lower part skin, 21.69 cGy and 19.78 cGy were respectively recorded; and if 10mm away, 20.48 cGy and 19.57 cGy were recorded. If the tumor was placed in the center, skin doses were found to increase by 3.2~17.1% whereas if the tumor is 5mm away from the ceiling part, the figure decreased to 2.8~9.0%. To the Tomo-couch direction, skin doses showed an average increase of 11% or over, compared to the planned treatment. Conclusion : This study found gaps between planned skin doses and actual doses in the Tomotherapy treatment planning. Especially to the Tomo-cocuh direction, skin doses were found to be larger than the planned doses. Thus, during the treatment of tumors near the Tomo-couch, doses will need to be more accurately calculated and more efforts to verify skin doses will be required as well.

Feasibility Study of the Radiophotoluminescent Glass Dosimeter for High-energy Electron Beams (유리선량계를 이용한 고에너지 전자선 측정 이용 가능성에 관한 연구)

  • Son, Ki-Hong;Jung, Hai-Jo;Shin, Sang-Hun;Lee, Hyun-Ho;Lee, Sung-Hyun;Kim, Mi-Sook;Ji, Young-Hoon;Kim, Kum-Bae
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.52-58
    • /
    • 2011
  • Our goal is to assess the suitability of a glass dosimeter on detection of high-energy electron beams for clinical use, especially for radiation therapy. We examined the dosimetric characteristics of glass dosimeters including dose linearity, reproducibility, angular dependence, dose rate dependence, and energy dependence of 5 different electron energy qualities. The GD was irradiated with high-energy electron beams from the medical linear accelerator andgamma rays from a cobalt-60 teletherapy unit. All irradiations were performed in a water phantom. The result of the dose linearity for high-energy electron beams showed well fitted regression line with the coefficient of determination; $R^2$ of 0.999 between 6 and 20 MeV. The reproducibility of GDs exposed to the nominal electron energies 6, 9, 12, 16, and 20 MeV was ${\pm}1.2%$. In terms of the angular dependence to electron beams,GD response differences to the electron beam were within 1.5% for angles ranging from $0^{\circ}$ to $90^{\circ}$ and GD's maximum response differencewas 14% lower at 180o. In the dose rate dependence, measured dose values were normalized to the value obtained from 500 MU/min. The uncertainties of dose rate were measured within ${\pm}1.5%$ except for the value from 100 MU/min. In the evaluation of the energy dependence of the GD at nominal electron energies between 6 and 20 MeV, we obtained lower responses between 1.1% and 4.5% based on cobalt-60 beam. Our results show that GDs have a considerable potentiality for measuring doses delivered by high-energy electron beams.

Verification of Skin Dose in Tomotherapy Using the Developed Phantom for Image Based Radiation Treatment System (영상 기반 치료 장비용 팬톰을 이용한 토모테라피 피부 선량 검증)

  • Park, Ji-Yeon;Chang, Ji-Na;Oh, Seung-Jong;Kang, Dae-Gyu;Jung, Won-Gyun;Lee, Jeong-Woo;Jang, Hong-Suk;Kim, Hoi-Nam;Park, Hae-Jin;Kim, Sung-Hwan;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.88-96
    • /
    • 2009
  • Radiation treatment for skin cancer has recently increased in tomotherapy. It was reported that required dose could be delivered with homogeneous dose distribution to the target without field matching using electron and photon beam. Therapeutic beam of tomotherapy, however, has several different physical characteristic and irradiation of helical beam is involved in the mechanically dynamic factors. Thus verification of skin dose is requisite using independent tools with additional verification method. Modified phantom for dose measurement was developed and skin dose verification was performed using inserted thermoluminescent dosimeters (TLDs) and GafChromic EBT films. As the homogeneous dose was delivered to the region including surface and 6 mm depth, measured dose using films showed about average 2% lower dose than calculated one in treatment planning system. Region indicating about 14% higher and lower absorbed dose was verified on measured dose distribution. Uniformity of dose distribution on films decreased as compared with that of calculated results. Dose variation affected by inhomogeneous material, Teflon, little showed. In regard to the measured dose and its distribution in tomotherapy, verification of skin dose through measurement is required before the radiation treatment for the target located at the curved surface or superficial depth.

  • PDF

The Characteristic of Radiation Exposure for Radiologist with Applying Condition in Interventional Radiology in Cardiology (심장내과의 중재적 시술시 시술조건에 따른 방사선사의 방사선 노출 특성)

  • Park, Jeong-Kyu;Cho, Euy-Hyun
    • Journal of Digital Contents Society
    • /
    • v.13 no.3
    • /
    • pp.421-429
    • /
    • 2012
  • Lately, the number of interventional radiology is increased by the extension of procedure in medical radiation, and radiation exposure may be appeared differently by interventional radiologists, it is caused increase of radiation dose for radiation worker, patient, and radiologists. This study has done a comparative analysis characteristic of radiation exposure for five radiologists who executed interventional cardiology for 303 patients in S university hospital of Gyeong-Buk from Nov. 1, 2011 to Jan. 31, 2011. The average exposure time of five radiologists was 697.95sec. The average of cumulative DAP(exp) for patients was $52,730mGycm^2$ and the average of total DAP for patients was $104,875.14mGycm^2$. The average of frames for image was 855.52 frames in acquired images, and the average of frames for images was 802.2 frames in exposure images. They were statistically significant differences (p<0.05). Exposure time, cumulative DAP(fluro), cumulative DAP(exp), total DAP, acquired image, and exposure image were high correlation except cumulative DAP(exp), and acquired runs in x-ray exposure characteristics of machine. Exposure time was a great influence on radiologist. It signified that the more exposure time lead to the more radiation dose for radiologist. Radiation dose is related to ability, experience, difficulty, and precision of procedures in interventional procedure. The number of angiography and exposure time is difficult to control by radiologists. Therefore, it is in need of reasonable system which was evaluated the real dose of medical teams in interventional proceedings. We think that self education and training are required to reduce radiation dose for radiologists and radiation workers.

Dose Evaluation of TPS according to Treatment Sites in IMRT (세기조절방사선치료 시 치료 부위에 따른 치료계획 시스템 간 선량평가)

  • Kim, Jin Man;Kim, Jong Sik;Hong, Chae Seon;Park, Ju Young;Park, Su Yeon;Ju, Sang Gyu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.181-186
    • /
    • 2013
  • Purpose: This study executed therapy plans on prostate cancer (homogeneous density area) and lung cancer (non-homogeneous density area) using radiation treatment planning systems such as $Pinnacle^3$ (version 9.2, Philips Medical Systems, USA) and Eclipse (version 10.0, Varian Medical Systems, USA) in order to quantify the difference between dose calculation according to density in IMRT. Materials and Methods: The subjects were prostate cancer patients (n=5) and lung cancer patients (n=5) who had therapies in our hospital. Identical constraints and optimization process according to the Protocol were administered on the subjects. For the therapy plan of prostate cancer patients, 10 MV and 7Beam were used and 2.5 Gy was prescribed in 28 fx to make 70 Gy in total. For lung cancer patients, 6 MV and 6Beam were used and 2 Gy was prescribed in 33 fx to make 66 Gy in total. Through two therapy planning systems, maximum dose, average dose, and minimum dose of OAR (Organ at Risk) of CTV, PTV and around tumor were investigated. Results: In prostate cancer, both therapy planning systems showed within 2% change of dose of CTV and PTV and normal organs (Bladder, Both femur and Rectum out) near the tumor satisfied the dose constraints. In lung cancer, CTV and PTV showed less than 2% changes in dose and normal organs (Esophagus, Spinal cord and Both lungs) satisfied dose restrictions. However, the minimum dose of Eclipse therapy plan was 1.9% higher in CTV and 3.5% higher in PTV, and in case of both lungs there was 3.0% difference at V5 Gy. Conclusion: Each TPS according to the density satisfied dose limits of our hospital proving the clinical accuracy. It is considered more accurate and precise therapy plan can be made if studies on treatment planning for diverse parts and the application of such TPS are made.

  • PDF

Early and Late Bowel Complication Following Irradiation of Cancer of the Uterine Cervix (자궁경부암의 고선량 치료후의 장관 합병증)

  • Kim Myung Se;Kim Kyung Ae;Kim Sung Kyu;Shin Sei One;Lee Sung Ho;Chang Jae Chun
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.59-70
    • /
    • 1989
  • Cervix cancer is the most common female cancer in Korea. In spite of their relatively local invasive tendency, still $44\%$ of patient will develop recurrent cancer. This result suggests that more aggressive local treatment may increase the cure rate but increased complication risk also cannot be avoidable. Various institutions proposed different treatment regimen, but recommended dose were about 4500 cGy for whole pelvis and 8000 cGy at point A, even though they agreed that those doses may not be satisfactory for control of bulky disease. 96 cases of invasive cervical cancer, treated with postoperative or primary radiation therapy were analyzed to determine the complication rate and prognostic factor in our treatment regimen Which is $5500\~1000 CGy$ higher than Other institution. Mean follow up duration was 21 months. Symptomatic patients including mild but persistent abdominal discomfort was $46\%$, but only 1 patient $(1\%)$ had operative treatment because of incomplete obstruction of small bowel. Most symptoms appeared within 12 months and most common complaints were frequent bowel movement. Barium enema and sigmoidoscopy were performed for persistent symptomatic patients. Only one patient had abnormal finding in barium enema which showed inefficiency of this method for detecting bowel complication. Patient's age, total tumor dose, total TDF, rectal dose were not significant risk factors for complication, but boost dose, previous history of operation had some relationship with complication risk. Even though dose of point A and rectum is $500\~1,000cGy$ higher than other institution, such a low rate of severe complications may suggest that fear of complications should not be overestimated than cure rate and the possibility of more aggressive treatment for better local control should not be underestimated.

  • PDF

Assessment on Accuracy of Stereotactic Body Radiation therapy (SBRT) using VERO (VERO system을 이용한 정위적 체부 방사선치료(SBRT)의 정확성 평가)

  • Lee, Wi Yong;Kim, Hyun Jin;Yun, Na Ri;Hong, Hyo Ji;Kim, Hong Il;Baek, Seung Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • Purpose: The present study aims to assess the level of coherency and the accuracy of Point dose of the Isocenter of VERO, a linear accelerator developed for the purpose of the Stereotactic Body Radiation Therapy(SBRT). Materials and Method: The study was conducted randomly with 10 treatment plans among SBRT patients in Kyungpook National University Chilgok Hospital, using VERO, a linear accelerator between June and December, 2018. In order to assess the equipment's power stability level, we measured the output constancy by using PTW-LinaCheck, an output detector. We also attempted to measure the level of accuracy of the equipment's Laser, kV(Kilo Voltage) imaging System, and MV(Mega Voltage) Beam by using Tofu Phantom(BrainLab, Germany) to assess the accuracy level of geometrical Isocenter. We conducted a comparative analysis to assess the accuracy level of the dose by using an acrylic Phantom($30{\times}30{\times}20cm$), a calibrated ion chamber CC-01(IBA Dosimetry), and an Electrometer(IBA, Dosimetry). Results: The output uniformity of VERO was calculated to be 0.66 %. As for geometrical Isocenter accuracy, we analyzed the error values of ball Isocenter of inner Phantom, and the results showed a maximum of 0.4 mm, a minimum of 0.0 mm, and an average of 0.28 mm on X-axis, and a maximum of -0.4 mm, a minimum of 0.0 mm, and an average of -0.24 mm on Y-axis. A comparison and evaluation of the treatment plan dose with the actual measured dose resulted in a maximum of 0.97 % and a minimum of 0.08 %. Conclusion: The equipment's average output dose was calculated to be 0.66 %, meeting the ${\pm}3%$ tolerance, which was considered as a much uniform fashion. As for the accuracy assessment of the geometric Isocenter, the results met the recommended criteria of ${\pm}1mm$ tolerance, affirming a high level of reproducibility of the patient's posture. The difference between the treatment plan dose and the actual measurement dose was calculated to be 0.52 % on average, significantly less than the 3 % tolerance, confirming that it obtained predicted does. The current study suggested that VERO equipment is suitable for SBRT, and would result in notable therapeutic effect.