Verification of Skin Dose in Tomotherapy Using the Developed Phantom for Image Based Radiation Treatment System

영상 기반 치료 장비용 팬톰을 이용한 토모테라피 피부 선량 검증

  • Park, Ji-Yeon (Department of Biomedical Engineering, The Catholic University of Korea) ;
  • Chang, Ji-Na (Department of Biomedical Engineering, The Catholic University of Korea) ;
  • Oh, Seung-Jong (Department of Biomedical Engineering, The Catholic University of Korea) ;
  • Kang, Dae-Gyu (The Catholic University of Korea, Department of Radiation Oncology, St. Vincent's Hospital) ;
  • Jung, Won-Gyun (Department of Biomedical Engineering, The Catholic University of Korea) ;
  • Lee, Jeong-Woo (Department of Radiation Oncology, Konkuk University Medical Center) ;
  • Jang, Hong-Suk (The Catholic University of Korea, Department of Radiation Oncology, Seoul St. Mary's Hospital) ;
  • Kim, Hoi-Nam (The Catholic University of Korea, Department of Radiation Oncology, Seoul St. Mary's Hospital) ;
  • Park, Hae-Jin (Department of Biomedical Engineering, The Catholic University of Korea) ;
  • Kim, Sung-Hwan (The Catholic University of Korea, Department of Radiation Oncology, St. Vincent's Hospital) ;
  • Suh, Tae-Suk (Department of Biomedical Engineering, The Catholic University of Korea)
  • 박지연 (가톨릭대학교 의과대학 의공학교실) ;
  • 장지나 (가톨릭대학교 의과대학 의공학교실) ;
  • 오승종 (가톨릭대학교 의과대학 의공학교실) ;
  • 강대규 (가톨릭대학교 성 빈센트병원 방사선종양학과) ;
  • 정원균 (가톨릭대학교 의과대학 의공학교실) ;
  • 이정우 (건국대학교 건국대학교병원 방사선종양학과) ;
  • 장홍석 (가톨릭대학교 서울성모병원 방사선종양학과) ;
  • 김회남 (가톨릭대학교 서울성모병원 방사선종양학과) ;
  • 박혜진 (가톨릭대학교 의과대학 의공학교실) ;
  • 김성환 (가톨릭대학교 성 빈센트병원 방사선종양학과) ;
  • 서태석 (가톨릭대학교 의과대학 의공학교실)
  • Published : 2009.06.30

Abstract

Radiation treatment for skin cancer has recently increased in tomotherapy. It was reported that required dose could be delivered with homogeneous dose distribution to the target without field matching using electron and photon beam. Therapeutic beam of tomotherapy, however, has several different physical characteristic and irradiation of helical beam is involved in the mechanically dynamic factors. Thus verification of skin dose is requisite using independent tools with additional verification method. Modified phantom for dose measurement was developed and skin dose verification was performed using inserted thermoluminescent dosimeters (TLDs) and GafChromic EBT films. As the homogeneous dose was delivered to the region including surface and 6 mm depth, measured dose using films showed about average 2% lower dose than calculated one in treatment planning system. Region indicating about 14% higher and lower absorbed dose was verified on measured dose distribution. Uniformity of dose distribution on films decreased as compared with that of calculated results. Dose variation affected by inhomogeneous material, Teflon, little showed. In regard to the measured dose and its distribution in tomotherapy, verification of skin dose through measurement is required before the radiation treatment for the target located at the curved surface or superficial depth.

최근 토모테라피의 빗면 조사 빔(tangential beam)을 이용하여 전자 빔과 광자 빔의 인접 조사 없이도 치료에 필요한 선량을 균일하게 전달할 수 있다는 결과가 보고되면서, 토모테라피를 이용한 피부암 치료가 증가하고 있다. 그러나 토모테라피 치료 빔은 선형가속기 빔과는 다른 물리적인 특성을 갖고 있으며, 여러 가지 동적 요소들이 결합되어 빔을 조사하므로 기존에 사용하고 있는 팬톰 이외의 독립적인 도구를 사용하여 피부 선량을 검증할 필요가 있다. 피부 선량 검증을 위하여 영상 기반 치료용 팬톰에 선량 측정 기능을 추가한 새로운 팬톰을 개발하였으며, 열형광선량계(LiF, TLD-100)와 GafChromic EBT필름을 팬톰에 삽입하여 전달된 피부 선량을 측정하였다. 팬톰의 반지름 방향으로 피부 영역을 포함하여 깊이 35 mm 영역까지 균일한 선량을 전달했을 때, 필름으로 측정한 특정 점에서의 선량은 계산 선량에 대하여 평균 약 2% 정도 낮게 나타났으며 처방 선량보다 최대 ${\pm}14%$까지 더 높거나 낮은 선량이 전달된 영역이 나타나는 것을 확인 할 수 있었다. 치료 계획 시스템의 계산 결과와 비교하였을 때, 조사 영역에서 측정한 선량 분포의 균일성이 감소하였으며 팬톰 내에 삽입한 테플론에 의한 선량 변화는 거의 나타나지 않았다. 토모테라피의 치료 빔을 이용하여 피부암과 같이 굴곡이 있는 낮은 깊이에 위치한 표적에 선량을 전달하는 경우, 연속적으로 회전하며 조사되는 빗면 조사 빔의 특성과 치료 계획 시스템의 선량 계산 방식에 따라서 피부 선량의 오차가 허용 범위보다 더 크게 나타날 수 있으므로 치료전 측정을 통한 피부 선량 검증이 필요하다.

Keywords

References

  1. Balog J, Olivera G, Kapatoes J: Clinical helical tomotherapy commissioning dosimetry. Med Phys 30:3097-3016 (2003) https://doi.org/10.1118/1.1625444
  2. Jeraj R, Mackie TR, Balog J, et al: Radiation characteristics of helical tomotherapy. Med Phys 31:396-404 (2004) https://doi.org/10.1118/1.1639148
  3. Van VM, Field C, Raaijmakers CP: Comparing step-andshoot IMRT with dynamic helical tomotherapy IMRT plans for head-and-neck cancer. Int J Radiat Oncol Biol Phys 62:1535- 1539 (2005) https://doi.org/10.1016/j.ijrobp.2005.04.011
  4. Chen YJ, Liu A, Han C, et al: Helical tomotherapy for radiotherapy in esophageal cancer: a preferred plan with better conformal target coverage and more homogeneous dose distribution. Med Dosim 32:166-171 (2007) https://doi.org/10.1016/j.meddos.2006.12.003
  5. Hardcastle N, Soisson E, Metcalfe P, Rosenfeld AB, Tome WA: Dosimetric verification of helical tomotherapy for total scalp irradiation. Med Phys 35:5061-5068 (2008) https://doi.org/10.1118/1.2996288
  6. Tournel K, Verellen D, Duchateau M, et al: An assessment of the use of skin flashes in helical tomotherapy using phantom and in-vivo dosimetry. Radiother Oncol 84:34-39 (2007) https://doi.org/10.1016/j.radonc.2007.06.003
  7. Ramsey CR, Seibert RM, Robison B, Mitchell M: Helical tomotherapy superficial dose measurements. Med Phys 34: 3286-3293 (2007) https://doi.org/10.1118/1.2757000
  8. Smith KS, Gibbons JP, Gerbi BJ, Hogstrom KR: Measurement of superficial dose from a static tomotherapy beam. Med Phys 35:769-774 (2008). https://doi.org/10.1118/1.2828206
  9. Fenwick JD, Tomé WA, Jaradat HA, et al: Quality assurance of a helical tomotherapy machine. Phys Med Biol 49: 2933-2953 (2004) https://doi.org/10.1088/0031-9155/49/13/012
  10. Higgins PD, Han EY, Yuan JL, Hui S, Lee CK: Evaluation of surface and superficial dose for head and neck treatments using conventional or intensity-modulated techniques. Phys Med Biol 52:1135-1146 (2007) https://doi.org/10.1088/0031-9155/52/4/018
  11. 장지나, 오승종, 정원균 등: 영상기반 방사선 치료기기를 위한 QA 팬텀 시작품 개발. 의학물리 19:120-124 (2008)
  12. Attix FH: Introduction to Radiological Physics and Radiation Dosimetry. Wiley, New York (2004), pp. 395-411.
  13. Roland TF, Stathakis S, Tramer R, Papanikolaou N: Measurement and comparison of skin dose for prostate and head-and-neck patients treated on various IMRT delivery systems. Appl Radiat Isot 66:1844-1849 (2008) https://doi.org/10.1016/j.apradiso.2008.05.003
  14. Hardcastle N, Soisson E, Metcalfe P, Rosenfeld AB, Tomé WA: Dosemetric verification of helical tomotherapy for tatal scalp irradiation. Med Phys 35:5061-5068 (2008) https://doi.org/10.1118/1.2996288
  15. Zeiden OA, Stephenson SA, Meeks SL, et al: Characterization and use of EBT radiochromi film for IMRT dose verification. Med Phys 33:4064-4072 (2006) https://doi.org/10.1118/1.2360012
  16. Devic S, Seuntjens J, Abdel-Rahman W, et al: Accurate skin dose measurements using radiochromic film in clinical applications. Med Phys 33:1116-1124 (2006) https://doi.org/10.1118/1.2179169
  17. Fuss M, Sturtewagen E, Wagter CD, Georg D: Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance. Phys Med Biol 52:4211- 4225 (2007) https://doi.org/10.1088/0031-9155/52/14/013
  18. Kinhikar RA, Murthy V, Goel V, Tambe CM, Dhote DS, Deshpande DD: Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy. Appl Radiat Isot 67:1683-1685 (2009) https://doi.org/10.1016/j.apradiso.2009.03.008
  19. Qi ZY, Deng XW, Huang SM, et al: In vivo verification of superficial dose for head and neck treatments using intensity- modulated techniques. Med Phys 36:59-70 (2009) https://doi.org/10.1118/1.3030951
  20. Roland TF, Stathakis S, Ramer R, Papanikolaou N: Measurement and comparison of skin dose for prostate and head-and-neck patients treated on various IMRT delivery systems. Appl Radiat Isot 66:1844-1849 (2008) https://doi.org/10.1016/j.apradiso.2008.05.003