• Title/Summary/Keyword: 패턴 분류 규칙

Search Result 142, Processing Time 0.033 seconds

A Rule-Based Image Classification Method for Analysis of Urban Development in the Capital Area (수도권 도시개발 분석을 위한 규칙기반 영상분류)

  • Lee, Jin-A;Lee, Sung-Soon
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.43-54
    • /
    • 2011
  • This study proposes a rule-based image classification method for the time-series analysis of changes in the land surface of the Seongnam-Yongin area using satellite-image data from 2000 to 2009. In order to identify the change patterns during each period, 11 classes were employed in accordance with statistical/mathematic rules. A generalized algorithm was used so that the rules could be applied to the unsupervised-classification method that does not establish any training sites. The results showed that the urban area of the object increased by 145% due to housing-site development. The image data from 2009 had a classification accuracy of 98%. For method verification, the results were compared to land-cover changes through Post-classification comparison. The maximum utilization of the available data within multiple images and the optimized classification allowed for an improvement in the classification accuracy. The proposed rule-based image-classification method is expected to be widely employed for the time-series analysis of images to produce a thematic map for urban development and to monitor urban development and environmental change.

Design of Prediction System based on Classification Method (분류기법을 이용한 예측 시스템 설계)

  • 김대진;이준욱;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.154-156
    • /
    • 2002
  • 정보화시대에 들어서면서 나날이 급증하는 데이터에 대한 재가용성을 위한 많은 연구가 이루어지고 있다 이러한 연구들은 의사결정지원, 예측, 추정 등의 분야에서 적용되고 있으나, 실생활에 활발히 적용되기까지 앞으로 많은 연구 및 개발이 요구된다. 이 논문에서는 수집된 데이터로부터 패턴을 추출하여 예측결과를 제공할 수 있는 시스템 모델과 모델에 적합한 점진적 규칙갱신 알고리즘을 제안하였다. 제안하는 예측 모델의 특징은 새로 입력되는 정보에 대한 반복 학습시 수치데이터에 대한 평균근사치 할당방법을 적용하여 규칙갱신을 용이하게 하였으며 각 클래스의 수치데이터에 대한 분류를 용이하도록 하였다.

  • PDF

Genetically Optimized Design of Fuzzy Neural Networks for Partial Discharge Pattern Recognition (부분방전 패턴인식을 위한 퍼지뉴럴네트워크의 유전자적 최적 설계)

  • Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun;Choi, Won;Kim, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1891-1892
    • /
    • 2008
  • 본 논문에서는 부분방전 패턴인식을 위한 퍼지뉴럴네크워크(Fuzzy-Nueral Network를 설계한다. 퍼지뉴럴네트워크의 구조에서 규칙의 전반부는 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 유전자 알고리즘을 이용하여 각 입력에 대한 전반부 멤버쉽함수의 정점과 학습률 및 모멤텀 계수를 최적으로 동조한다. 제안된 네트워크는 부분방전 패턴인식을 위해 다중 출력을 가지며, 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 256개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류하며, 패턴인식률로서 결과를 분석한다.

  • PDF

Efficient Mining of User Behavior patterns by classification of age based on location information (위치에 따른 연령대별 유용한 행동패턴 추출 기법)

  • Kim, HyeRan;Lee, SeungCheol;Kim, UngMo
    • Annual Conference of KIPS
    • /
    • 2007.11a
    • /
    • pp.250-253
    • /
    • 2007
  • 통신기술의 발달로 무선단말기의 보급이 급증하고 무선 네트워크 사용이 일반화됨으로써, 최근 유비쿼터스 컴퓨팅 기술이 중요한 이슈가 되고 있다. 유비쿼터스 컴퓨팅은 시간과 장소의 한계를 넘어 사용자가 하고자 하는 일을 컴퓨팅 환경이 상황을 인지하여 돕는 것을 가능하게 한다. 상황인지를 위해 순차패턴과 시간 연관규칙 탐사를 이용하여 사용자의 행동패턴을 추출하는 연구가 활발히 진행되고 있다. 이러한 연구를 통한 행동패턴은 사용자의 특성을 간과하게 되며, 각 사용자에게 더욱 유용한 서비스를 제공하기 위해서는 사용자를 분류하는 것이 필요하다. 그러나 기존의 연구는 단지 통계적인 사용자의 빈발 행동패턴만을 추출하여 각 사용자의 관심사와는 무관한 서비스 제공이 이루어질 수 있다. 성별, 나이, 직업 등의 개인정보와 위치를 고려하여 사용자에게 더욱 더 효율적이고 유용한 서비스를 제공할 수 있도록 행동패턴을 유형별로 분류할 필요가 있다. 본 논문에서는 각 위치에 따른 사용자의 연령대별 유용한 행동패턴을 추출하여 정확한 서비스를 제공할 수 있는 마이닝 기법을 제안한다.

Design and Implementation of the Intrusion Detection Pattern Algorithm Based on Data Mining (데이터 마이닝 기반 침입탐지 패턴 알고리즘의 설계 및 구현)

  • Lee, Sang-Hoon;Soh, Jin
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.717-726
    • /
    • 2003
  • In this paper, we analyze the associated rule based deductive algorithm which creates the rules automatically for intrusion detection from the vast packet data. Based on the result, we also suggest the deductive algorithm which creates the rules of intrusion pattern fast in order to apply the intrusion detection systems. The deductive algorithm proposed is designed suitable to the concept of clustering which classifies and deletes the large data. This algorithm has direct relation with the method of pattern generation and analyzing module of the intrusion detection system. This can also extend the appication range and increase the detection speed of exiting intrusion detection system as the rule database is constructed for the pattern management of the intrusion detection system. The proposed pattern generation technique of the deductive algorithm is used to the algorithm is used to the algorithm which can be changed by the supporting rate of the data created from the intrusion detection system. Fanally, we analyze the possibility of the speed improvement of the rule generation with the algorithm simulation.

Temporal Associative Classification based on Calendar Patterns (캘린더 패턴 기반의 시간 연관적 분류 기법)

  • Lee Heon Gyu;Noh Gi Young;Seo Sungbo;Ryu Keun Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.6
    • /
    • pp.567-584
    • /
    • 2005
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from temporal data. Association rules and classification are applied to various applications which are the typical data mining problems. However, these approaches do not consider temporal attribute and have been pursued for discovering knowledge from static data although a large proportion of data contains temporal dimension. Also, data mining researches from temporal data treat problems for discovering knowledge from data stamped with time point and adding time constraint. Therefore, these do not consider temporal semantics and temporal relationships containing data. This paper suggests that temporal associative classification technique based on temporal class association rules. This temporal classification applies rules discovered by temporal class association rules which extends existing associative classification by containing temporal dimension for generating temporal classification rules. Therefore, this technique can discover more useful knowledge in compared with typical classification techniques.

Extraction of Classification Boundary for Fuzzy Partitions and Its Application to Pattern Classification (퍼지 분할을 위한 분류 경계의 추출과 패턴 분류에의 응용)

  • Son, Chang-S.;Seo, Suk-T.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.685-691
    • /
    • 2008
  • The selection of classification boundaries in fuzzy rule- based classification systems is an important and difficult problem. So various methods based on learning processes such as neural network, genetic algorithm, and so on have been proposed for it. In a previous study, we pointed out the limitation of the methods and discussed a method for fuzzy partitioning in the overlapped region on feature space in order to overcome the time-consuming when the additional parameters for tuning fuzzy membership functions are necessary. In this paper, we propose a method to determine three types of classification boundaries(i.e., non-overlapping, overlapping, and a boundary point) on the basis of statistical information of the given dataset without learning by extending the method described in the study. Finally, we show the effectiveness of the proposed method through experimental results applied to pattern classification problems using the modified IRIS and standard IRIS datasets.

Data Mining for CRM

  • 조성준
    • Proceedings of the Korea Database Society Conference
    • /
    • 2001.06a
    • /
    • pp.85-105
    • /
    • 2001
  • o 대량의 데이터베이스로부터 탐색과 분석을 통하여 의미 있는 패턴이나 규칙을 찾아내는 과정 o 분류, 추정, 예측, 유사통합, 군집화, 기술 o 가설검정, 지식발견 (중략)

  • PDF

Pattern Generation Technique for Network-based Intrusion Detection using Association Rules (연관 규칙을 이용한 네트워크 기반 침입 탐지 패턴생성 기술)

  • Soh, Jin;Lee, Sang-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.619-621
    • /
    • 2002
  • 네트워크 기반 컴퓨터 시스템은 현대사회에 있어서 매우 중요한 역할을 담당하고 있기 때문에 이들은 정보 범죄들로부터 안정적이면서 효율적인 환경을 제공하는 것은 매우 중요한 일이다. 현재의 침입탐지 시스템은 네트워크 상에서 지속적으로 처리되는 대량의 패킷에 대하여 탐지속도가 떨어지고, 새로운 침입유형에 대한 대응방법이나 인지능력에도 한계가 있기 때문이다. 따라서 다양한 트래픽 속에서 탐지율을 높이고 탐지속도를 개선하기 위한 방안이 필요하다. 본 논문에서는 침입탐지 능력을 개선하기 위해 먼저, 광범위한 침입항목들에 대한 탐지 적용기술을 학습하고, 데이터 마이닝 기법을 이용하여 침입패턴 인식능력 및 새로운 패턴을 생성하는 적용기술을 제안하고자 한다. 침입 패턴생성을 위해 각 네트워크에 돌아다니는 관련된 패킷 정보와 호스트 세션에 기록되어진 자료를 필터링하고, 각종 로그 화일을 추출하는 프로그램들을 활용하여 침입과 일반적인 행동들을 분류하여 규칙들을 생성하였다. 마이닝 기법으로는 학습된 항목들에 대한 연관 규칙을 찾기 위한 연역적 알고리즘을 이용하였다. 또한, 추출 분석된 자료는 리눅스기반의 환경 하에서 다양하게 모아진 네트워크 로그파일들을 본 논문에서 제안한 방법에 따라 적용한 결과이다.

  • PDF

A New Unsupervised Learning Network and Competitive Learning Algorithm Using Relative Similarity (상대유사도를 이용한 새로운 무감독학습 신경망 및 경쟁학습 알고리즘)

  • 류영재;임영철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2000
  • In this paper, we propose a new unsupervised learning network and competitive learning algorithm for pattern classification. The proposed network is based on relative similarity, which is similarity measure between input data and cluster group. So, the proposed network and algorithm is called relative similarity network(RSN) and learning algorithm. According to definition of similarity and learning rule, structure of RSN is designed and pseudo code of the algorithm is described. In general pattern classification, RSN, in spite of deletion of learning rate, resulted in the identical performance with those of WTA, and SOM. While, in the patterns with cluster groups of unclear boundary, or patterns with different density and various size of cluster groups, RSN produced more effective classification than those of other networks.

  • PDF