• Title/Summary/Keyword: 파이프 골조온실

Search Result 16, Processing Time 0.033 seconds

Greenhouse structural analysis according to various section type (온실 서까래용 파이프의 단면형상에 따른 구조적 특성 변화)

  • 윤남규;이시영;김학주;남윤일;김문기;유인호
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2002.11a
    • /
    • pp.289-292
    • /
    • 2002
  • 최근들어 파이프 골조의 온실 구조는 해마다 강풍이나 적설 둥으로 인한 파손으로 막대한 경제적 손실을 입고 있으며, 이러한 피해는 환경조절 및 자동화 설비의 설치에 직접적인 영향을 주는 중요한 요인이므로 시설의 구조역학적인 연구가 지속적으로 이루어져야 한다. 그러나 국내에서는 1990년대 초반 온실의 구조안전 및 구조설계 기준 설정, 자재의 규격화 및 표준화에 관한 연구가 일부 수행된 바 있으나, 파이프 골조의 온실은 구조물로서의 공학적 설계나 유지관리에 대한관심이 부족하여 시설의 구조역학적인 연구가 거의 이루어지고 있지 않는 실정이다. (중략)

  • PDF

Corrosion and Strength Changes of Agricultural Steel Pipes Elapsed 20 Years under the Greenhouse Environment (온실 환경 하에서 20년 경과된 농업용 강관의 부식 및 강도변화)

  • Nam, Sang-Woon;Ryu, Hee-Ryong;Choi, Man-Kwon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.196-201
    • /
    • 2020
  • In order to increase the durability of the pipe framed greenhouse, galvanized steel pipes with four corrosion protection treatments were installed in the greenhouse. After 20 years, experiments on surface corrosion and strength change were conducted. Control (untreated) pipes exposed in the atmosphere showed a 1.3% reduction in strength, but little difference from other treatments. The strength of heavy protective coating pipes buried in the ground decreased by 0.6%, showing little change, but untreated pipes decreased by 15.7%. And antirust paint and asphalt coating pipes decreased by 4.2~4.4%. Pipes exposed in the atmosphere did not show severe corrosion in all samples. There was no change in heavy protective coating pipes, and no rust was found in antirust painting pipes either and there was only slight discoloration. Asphalt coating pipes discolored black and some rust was found, and untreated pipes were rusted by 20~30% of the surface. However, untreated pipes buried in the ground were completely rusted, and asphalt coating pipes were rusted by 80~90% of the surface. Antirust painting pipes were rusted by 20~30%, and heavy protective coating pipes did not change almost. The heavy protective coating treatment showed a clear corrosion protection effect even in the parts buried in the ground, and the antirust painting treatment also showed some corrosion protection effect. Therefore, it is judged to be applicable to the field of pipe framed greenhouses.

Development of a Temporary Pole Supporting System to Protect the Plastic Houses from Heavy Snow Damage (비닐하우스 폭설피해 방지용 가지주 장치의 개발)

  • 남상운
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.11a
    • /
    • pp.65-70
    • /
    • 2001
  • 우리 나라의 온실 설치 면적은 1999년말 현재 51,200ha에 이르고 있으며 그 중 유리온실이 363ha로 0.7%, 철골 경질판 온실이 125ha로 0.2%이고, 아연도강관을 사용한 비닐하우스가 50,712ha로 99.1%를 차지하고 있다. 파이프 골조의 비닐하우스는 대부분 아치형의 지붕 모양을 하고 있으며, 바람에는 비교적 강하나 적설에 약한 구조이다. 전국적으로 가장 널리 분포하고 있는 직경 25.4mm, 두께 1.5mm의 파이프를 사용한 폭 6m의 단동 온실의 경우 서까래 간격 60~80cm일 때 안전 적설심은 10~14cm 정도에 불과하다(남 등, 2000). (중략)

  • PDF

A Field Survey on the Structure and Maintenance Status of Pipe Framed Greenhouses (파이프 골조 온실의 구조 및 유지관리실태 조사분석)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.106-114
    • /
    • 2000
  • An investigation was conducted to get the basic data for establishing maintenance strategy of pipe framed greenhouses. The contents of the investigation consisted of actual state of structures, maintenance status, meteorological disaster, and corrosion characteristics of pipe framework in greenhouses. the number of greenhouses investigated was 108 in total. Most multi-span greenhouses had narrower width and lower height than the standared 1-2W greenhouse, and most of single-span greenhouses were tunnel type. In multi-span greenhouses, the size and interval of frameworks such as rafter, purline, column , and cross beam were mostly suitable, but frameworks of single-span greenhouses were mostly insufficient. After about 7 years in grounds, 8 years in joints, 10 years in bending parts. and 13 years in columns. pipe surface was mostly rusted. Most weak parts in corrosion were pipes in contact with the ground, joints, roll-up shaft pipes, and pipes close to the gutter. Almost all of the greenhouse farmers didn't pay any attention to maintenance affair in a regular interval for pipe framed grenhouses. Many greenhouses have experienced the meteorologicla diaster such as uplift of foundation, partial or complete failure by the hyphoon and/or high winds.

  • PDF

A Study on the Standard Durable Years of Pipe Framed Greenhouses (파이프 골조 온실 구조물의 표준내용연수 연구)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.1
    • /
    • pp.96-101
    • /
    • 2001
  • In designing the greenhouse structures, snow and wind loads must be estimated on the basis of the probability of occurrence of snow or wind storms of a given intensity. The recurrence interval chosen depends on the standard durable years and safety factors of the greenhouse. This study was carried out to find the standard durable years of pipe framed greenhouses. Bend test for metallic materials was conducted on samples of galvanized steel pipes being used in greenhouse frames. A secular change of collapse loads and flexural rigidity for galvanized steel pipes were analyzed with the parts buried in the ground and exposed in the atmosphere. From those experimental results and corrosion rate of galvanized film, the standard durable years for pipe framed greenhouses are estimated as follows ; the small scale pipe houses of movable type is 7∼8 years and the large scale pipe houses of fixed type is 14∼15 years.

  • PDF

A Study on the Uplift Capacity Improvement of Pipe-framed Greenhouse Foundation Using Circular Horizontal Anchors (원형 수평앵커를 이용한 파이프 골조 온실기초의 인발저항럭 개선에 관한 연구)

  • Yoon Yong Cheol;Lee Keun Hoo;Yu Chan
    • KCID journal
    • /
    • v.10 no.2
    • /
    • pp.55-61
    • /
    • 2003
  • Bench scale experiments have been carried out to evaluate the adaptability of the anchor for improving the uplift capacity of foundation of pipe framed greenhouse which is typically adopted in conventional plastic film glazing greenhouses, such as 1-2W ty

  • PDF

Field Survey and Structural Safety Analysis of Pipe Framed Greenhouses (파이프 골조 온실의 구조 실태 및 안전성 검토(농업시설))

  • 남상운;김문기;유인호
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.315-320
    • /
    • 2000
  • An investigation and structural safety analysis was conducted to get the basic data for establishing maintenance strategy of pipe framed greenhouses. The number of greenhouses investigated was 108 in total. Most multi-span greenhouses had narrower width and lower height than the standard 1-2W greenhouse, and most of single-span greenhouses were tunnel type. In multi-span greenhouses, the size and interval of frameworks such as rafter, purline, column, and cross beam were mostly suitable, but frameworks of single-span greenhouses were mostly insufficient.

  • PDF

Experimental Analysis on Yield Strength of Pipe Connectors and Joints for Pipe Framed Greenhouses (파이프 골조 온실의 조립 연결구 내력 시험)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.113-119
    • /
    • 2001
  • Experiments on the yield strength of pipe connectors made of metal wire, joint pins, pole pipes, multi span insertion joints, and T-clamp joints used in pipe houses were conducted. The strength of connections of a pipe connector made of metal wire was adequate but it had a big difference according to loading direction. Therefore as it is installed, its direction should be taken into consideration. The collapse load of pipes connected with a joint pin was lower than that of single pipes. In the part of frame member at which the great bending moment occurs, the use of joint pin should be avoided. Also experimental results showed that pole pipes for use in a part of frame buried under the ground were safe, and the strength of multi span insertion joints should be increased. The resistant moment of T-clamp was about 13.7% of a single pipe. In case that the external forces acting on left and right rafter are different. a unsymmetrical rotational force is produced at the multi span joint. If it is expected that the actual bending moment on the multi span joint is larger than resistant moment of T-clamp, a reinforcement to safely resist the rotational force is required.

  • PDF

The Uplift Capacity of Plane and Corrugated Piles for Pipe Frame Greenhouse (파이프 골조온실의 민말뚝과 주름말뚝의 인발저항력)

  • Yong Cheol Yoon;Won Myung Suh;Jae Hong Cho
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.148-154
    • /
    • 2001
  • The uplift capacity of a pile for improving the wind resistance of the 1-2 W type plastic film pipe on greenhouses was tested using the plane and corrugated piles with various shapes and diameters. First, the resistant uplift capacity was measured by using the uplift loading on plane piles. As the uplift loading on plane piles increased, the resistant uplift capacity also increased until the loading was reached to ultimate uplift capacity. After ultimate uplift capacity was appeared the uplift displacement, the uplift capacity was decreased gradually. Secondly, the resistant uplift capacity was measured by using the uplift loading on corrugated piles. After the uplift capacity was reached the uplift displacement, the uplift capacity was continually increased or decreased. In general, the ultimate uplift capacity was independent of pile shapes, pile diameter length, and embedded pipe depth. However, the ultimate uplift capacity of a corrugated pile was twice more than that of a plane pile without regard to its diameter and embedded depth. The ultimate uplift capacity per unit pile area was increasing in deeper embedded depth. However, the longer a pile diameter was, the less ultimate uplift capacity. The uplift capacity of a plane pile, used in conjunction with the design wind velocity (26.9m.s$^{-1}$ ) of the project area, was unsatisfiable without regard to diameters and embedded depths of piles, while most of corrugated piles were well appeared uplift capacity under various experimental conditions.

  • PDF

A Study on the Uplift Capacity of Plane and Corrugated Pile Foundations for Pipe Frame Greenhouse (파이프 골조온실의 민말뚝 기초와 주름말뚝 기초의 인발저항력에 대한 실험적 연구)

  • 조재홍;윤용철;윤충섭;서원명
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.255-261
    • /
    • 1998
  • The recent greenhouses are extremely light-weight structures and easily damaged by the strong winds due to the lack of uplift capacity of pile foundations. The uplift capacity of pile foundations are subject to the shape of the pile surface, diameter, weight, and embedded depths. etc. So, it is very important to figure out the most appropriate conditions on shape of the pile surface and it's embedding depths. to improve wind proof capability of pipe greenhouses. In this study, plane and corrugated pile surfaces were examined on their uplift capacity with 30 to 50 cm of embedding depths. The diameters of tested piles were 10 cm, 15 cm, and 20 cm, respectively. Compaction ratio of the tested soil was 80%. Each test run was repeated three times for the respective treatment. Obtained results are as follows; In all cases, as the diameter and the embedding depth were increased, the ultimate uplift capacity of the pile was also increased. And it was clear that the ultimate uplift capacity of corrugated pile was approximately two times as big as that of plain piles under same conditions.

  • PDF