• Title/Summary/Keyword: 특징 분류

Search Result 4,470, Processing Time 0.036 seconds

Feature Extraction Method Using the Bhattacharyya Distance (Bhattacharyya distance 기반 특징 추출 기법)

  • Choi, Eui-Sun;Lee, Chul-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.6
    • /
    • pp.38-47
    • /
    • 2000
  • In pattern classification, the Bhattacharyya distance has been used as a class separability measure. Furthemore, it is recently reported that the Bhattacharyya distance can be used to estimate error of Gaussian ML classifier within 1-2% margin. In this paper, we propose a feature extraction method utilizing the Bhattacharyya distance. In the proposed method, we first predict the classification error with the error estimation equation based on the Bhauacharyya distance. Then we find the feature vector that minimizes the classification error using two search algorithms: sequential search and global search. Experimental reslts show that the proposed method compares favorably with conventional feature extraction methods. In addition, it is possible to determine how man, feature vectors arc needed for achieving the same classification accuracy as in the original space.

  • PDF

Cancer Classification with Gene Expression Profiles using Forward Selection Method (전진 선택법을 이용한 유전자 발현정보 기반의 암 분류)

  • Yoo, Si-Ho;Cho, Sung-Bae
    • Annual Conference of KIPS
    • /
    • 2003.05a
    • /
    • pp.293-296
    • /
    • 2003
  • 유전 발현 데이터는 생명체의 특정 조직에서 채취한 샘플을 microarray상에서 측정한 것으로 유전자들의 발현 정도가 수치로 나타난 데이터이다. 일반적으로 정상조직과 이상조직에서 관련 유전자들의 발현 정도는 차이를 보이기 때문에, 유전발현 데이터를 통하여 암을 분류할 수 있다. 하지만 분류에 모든 유전자가 관여하지는 않으므로 관련성 있는 유전자만을 선별해내는 작업인 특징 선택방법이 필요하다. 본 논문에서는 회귀분석의 변수선택방법중 하나인 전진 선택법(forward selection method)을 사용하여 유전자들을 선택하고 분류하는 방법을 제안한다. 실험데이터는 대장암 데이트를 사용하였고, 분류기는 KNN을 사용하였다. 이 방법과 상관계수를 이용한 특징 선택 방법인 피어슨 상관계수와 스피어맨 상관계수방법과 비교해본 결과 전진 선택법에 의한 특징 선택방법이 암의 분류에 있어서 더 효과적인 유전자 선택을 한다는 사실을 확인하였다. 실험결과 90.3%의 높은 인식률을 보였다.

  • PDF

A Gradient-Based Explanation Method for Graph Convolutional Neural Networks (그래프 합성곱 신경망에 대한 기울기(Gradient) 기반 설명 기법)

  • Kim, Chaehyeon;Lee, Ki Yong
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.670-673
    • /
    • 2022
  • 설명가능한 인공지능은 딥러닝과 같은 복잡한 모델에서 어떠한 원리로 해당 결과를 도출해냈는지에 대한 설명을 함으로써 구축된 모델을 이해할 수 있도록 설명하는 기술이다. 최근 여러 분야에서 그래프 형태의 데이터들이 생성되고 있으며, 이들에 대한 분류를 위해 다양한 그래프 신경망들이 사용되고 있다. 본 논문에서는 대표적인 그래프 신경망인 그래프 합성곱 신경망(graph convolutional network, GCN)에 대한 설명 기법을 제안한다. 제안 기법은 주어진 그래프의 각 노드를 GCN을 사용하여 분류했을 때, 각 노드의 어떤 특징들이 분류에 가장 큰 영향을 미쳤는지를 수치로 알려준다. 제안 기법은 최종 분류 결과에 영향을 미친 요소들을 gradient를 통해 단계적으로 추적함으로써 각 노드의 어떤 특징들이 분류에 중요한 역할을 했는지 파악한다. 가상 데이터를 통한 실험을 통해 제안 방법은 분류에 가장 큰 영향을 주는 노드들의 특징들을 실제로 정확히 찾아냄을 확인하였다.

Medical Image Classification and Retrieval using MPEG-7 Visual Descriptors and Multi-Class SVM(Support Vector Machine) (MPEG-7 시각 기술자와 멀티 클래스 SVM을 이용한 의료 영상 분류와 검색)

  • Shim, Jeong-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.135-138
    • /
    • 2008
  • 본 논문은 의료 영상에 대한 효과적인 분류와 검색을 위한 알고리즘을 제안한다. 영상 분류와 검색을 위해서 MPEG-7 표준 기술자인 색 구조 기술자와 경계선 히스토그램 기술자를 사용해 영상들에 대한 특징 값을 추출한다. 이렇게 구해진 특징 값들을 의료 영상의 분류와 검색에 적용해 본 결과 비교적 낮은 성능을 보여줌을 확인하고 앞서 구해진 특징 값들을 교사 학습 방법인 SVM(Support Vector Machine)과 비교사 학습 방법인 FCM(Fuzzy C-means Clustering)에 적용시켰다. 기존 연구에서는 SVM과 FCM의 통합으로 의료 영상에 대한 분류와 검색을 시행하였지만 본 논문에서 실험한 결과 SVM과 MPEG-7 시각 기술자 중에 하나인 EHD(Edge Histogram Descriptor)를 가중치 선형 결합하여 실험한 결과가 더 정확한 분류와 높은 검색 성능을 나타냄을 확인하였다.

A Study on Gate Design Methodology by Using Generic Shape and Feature Technique (총칭형상과 특징형상 기법을 원용한 게이트 설계 방안 연구)

  • 이찬우;허용정
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.253-256
    • /
    • 2001
  • 본 논문은 게이트 설계를 위한 제품의 형상을 정의하기 위해서 전기 전자분야 제품제조기업에서 실제로 생산했던 사출성형제품을 대상으로, 실제로 제품을 생산할 때 사용되었던 게이트 종류와 제품 용도를 분류기준으로 하여, 총칭형상과 특징형상 기법을 이용해서 제품을 분류하였다. 이러한 분류 작업을 통해서 게이트 설계에 영향을 미치는 특징형상을 제시하였다.

Data Classification of Visual Quality for Image Recognition (영상인식을 위한 화질의 데이터 분류성)

  • Cho, Jae-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.279-280
    • /
    • 2021
  • 패턴 또는 영상을 인식하기 위하여 먼저 기계 학습 모델을 선택하고, 선택된 모델은 여러 단계의 처리 단계 과정으로써, 학습 데이터 구성과 특징 추출 그리고 분류기 등으로 크게 나눌 수 있다. 기존의 학습 모델의 처리 단계 중 학습 데이터 구성은 첫 번째 중요한 단계이다. 본 논문에서는 학습 데이터들의 특징을 분석하여 데이터 분류성의 척도로 사용될 수 있는지를 검토하여 차후 기계 학습 및 딥 러닝의 인식을 높이고자 한다.

  • PDF

Texture Classification by a Fusion of Weighted Feature (가중치 특징 벡터를 이용한 질감 영상 인식 방법)

  • 정수연;곽동민;윤옥경;박길흠
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.407-410
    • /
    • 2001
  • 최근 영상 검색(retrieval)과 분류(classification)에서 질감 특징(texture feature)을 이용한 연구들이 활발하게 진행되고 있다. 본 논문에서는 효율적인 질감 특징 추출을 위해 명암도 상호발생 행렬법(gray level co-occurrence matrix)과 웨이블릿 변환(wavelet transform)을 이용하여 질감의 특징을 추출한 후 특징의 중요도에 따라서 가중치를 부여하는 방법을 제안한다. 이렇게 추출된 가중치 대표 벡터들을 기반으로 베이시안 분류기(Bayesian classifier)를 통해 임의의 질감을 인식하였다.

  • PDF

A Study on the Feature Extraction using the Wavelet Transform in Satellite Remote Sensing Image (웨이브렛 변환을 이용한 원격탐사 이미지 데이터의 특징 추출에 관한 연구)

  • 전영준;김진일
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.237-240
    • /
    • 2000
  • 본 논문에서는 원격탐사 이미지 데이터의 분석과정중의 하나인 이미지의 분류를 위해서 적용되는 다중분광 영상에서 특징 추출을 위한 효율적인 방법을 제안한다. 즉, 웨이브렛 변환을 이용하여 위성탐사 이미지 데이터의 특성을 분석하여 실제 이미지 분류에 기여도가 높은 특징을 추출하는 방법을 제안하였다. 효과적인 특징을 추출하기 위하여 이미지 데이터의 텍스쳐 특징을 이용하였다.

  • PDF

A Study on Recognition of Moving Object Crowdedness Based on Ensemble Classifiers in a Sequence (혼합분류기 기반 영상내 움직이는 객체의 혼잡도 인식에 관한 연구)

  • An, Tae-Ki;Ahn, Seong-Je;Park, Kwang-Young;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.95-104
    • /
    • 2012
  • Pattern recognition using ensemble classifiers is composed of strong classifier which consists of many weak classifiers. In this paper, we used feature extraction to organize strong classifier using static camera sequence. The strong classifier is made of weak classifiers which considers environmental factors. So the strong classifier overcomes environmental effect. Proposed method uses binary foreground image by frame difference method and the boosting is used to train crowdedness model and recognize crowdedness using features. Combination of weak classifiers makes strong ensemble classifier. The classifier could make use of potential features from the environment such as shadow and reflection. We tested the proposed system with road sequence and subway platform sequence which are included in "AVSS 2007" sequence. The result shows good accuracy and efficiency on complex environment.

Feature Selection for Document Classifier for IT documents based on SVM (SVM 기반 기술정보 문서분류를 위한 특징 선택 기법)

  • Kang, Yun-Hee
    • Annual Conference of KIPS
    • /
    • 2002.04a
    • /
    • pp.577-580
    • /
    • 2002
  • 인터넷상의 정보의 급증에 따라 필요한 정보를 발견하고 관련된 정보를 조직화하기가 더욱 어려워지고 있으며 정보 접근의 부하를 줄이기 위한 효율적인 문서 분류의 중요성 및 필요성이 증가하고 있다. 본 논문에서는 디렉토리 내의 학습 문서 집합을 기반으로 구성된 디렉토리 내의 대표 용어 집합으로 구성된 모델을 학습 및 분류하기 위해 SVM을 사용한다. 문서분류를 위해 정보통신 웹 디렉토리 내의 문서로부터 추출된 용어 집합을 기반으로 학습을 수행한 후 문서 분류를 수행한다. 또한 TFiDF를 기반으로 특징을 표현하기 위해 벡터공간 모델을 사용하였고 이를 기반으로 성능 평가를 수행한다.

  • PDF