• 제목/요약/키워드: 특징값 추출

검색결과 951건 처리시간 0.034초

비선형 확산 기법을 이용한 항공 영상에서의 강인한 직선 특징 추출 기법 (Robust Extraction of Linear Feature in Aerial Image Using Nonlinear Diffusion)

  • 장주용;박인규;이경무;이상욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.399-402
    • /
    • 2001
  • 본 논문에서는 항공 영상에서 직선 성분을 강건하게 추출하기 위한 새로운 영상 필터링 기법을 제안한다. 제안하는 기법은 지상 구조물의 추출에 유용한 직선 특징을 이루는 에지와 비직선 특징을 이루는 에지의 대비도를 증가시키기 위하여 비선형, 비등방 확산 기법 [2]을 영상에 적응적으로 적용한다. 이를 위하여 확산 매개변수를 제안하는 새로운 직선성 척도로 설정하고 영상의 각 점에서의 직선성 값에 따라 적응적으로 확산을 시킴으로써 확산 과정에서 직선 특징을 잘 보존하고 비직선 특징을 효과적으로 제거한다. 본 논문에서는 직선성 척도로서 에지 체인 위의 점들의 방향성 엔트로피를 제안하고 다양한 영상에 대한 실험을 통해서 엔트로피 척도가 영상에서의 직선 특징을 추출하는데 효율적임을 보인다.

  • PDF

로컬영역에서 다중 특징을 이용한 물체인식 (Object Recognition using Multiple Local Features)

  • 최경영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.604-606
    • /
    • 2003
  • 본 논문은 향상된 Scale Invariant Feature Transform (SIFT) 기법과 이로부터 얻어진 로컬 특징 영역에서 다중특징을 이용한 물체인식 방법에 대하여 논하였다. SIFT 기법 [1]은 물체의 크기. 회전. 3차원 좌표변환에 강인한 특성을 갖는다. 이 기법에서는 크기가 다른 가우시안 (Gaussian) 함수를 적용한 영상들의 차이에서의 최대 및 최소값이 특징점으로 결정된다. 하지만 SIFT 알고리듬의 특성상, 인식되어야 될 물체의 비교적 큰 크기 변화, 중요도가 낮은 특징점들의 추출, 그리고 서로 다른 물체에서 추출된 유사한 특징벡터등이 인식 시스템의 신뢰도를 저하 시킬 수 있다. 이에 대응방안으로, 본 논문에서는 상대적으로 낮은 인식정보를 갖는 추출된 특징점을 제거하기 위한 기법과 서로 다른 물체에서 생성된 유사 특징벡터의 구분을 위한 특징점에서의 방위 (orientation) 비교법 및 색차 (chrominance) 정보를 사용에 대하여 기술하였다.

  • PDF

신경회로망을 이용한 심전도(ECG)기반의 생체인식 (ECG based user identification method using neural networks)

  • 민철홍;김태선
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.791-792
    • /
    • 2006
  • 본 논문은 심전도의 리드III 파형을 이용하여 신원확인이 가능한 생체인식 기술을 제안한다. 인식을 위한 심전도의 리드III파형을 특징추출하기 위해 $4{\sim}30Hz$의 대역통과 필터를 사용하여 피크(peak)점만 남겨놓고 모든 잡음을 제거한 후, AAV(absolute amplitude value)를 이용하여 피크점의 값을 추출한다. 추출된 피크 점은 원신호의 피크점과 같으므로 이를 기준으로 전체파형을 특징추출을 위한 단위 파형으로 분리한다. 분리된 신호는 정의된 4가지 형태(type)의 파형 중 가장 유사한 파형타입으로 분류되며, 분류된 형태를 기준으로 꼭지점, 최대 피크점, 최소 피크점, 최대.최소 피크점 비, 파형 간격(interval) 및 파형의 세부 모양 등 총22가지의 특징들을 추출한다. 추출된 특징들은 오류역전파 신경회로망(back-propagation neural network)의 입력으로 사용되었으며, 성인남녀 31명을 대상으로 제한된 파형 내에서 실험한 결과 100%의 인식률을 보였다.

  • PDF

Wavelet 과 Texture feature를 이용한 영상 분류방법 (An Image Classificatiion Using Wavelet and Texture Feature)

  • 이연숙;이병일;최홍국;김상균;서재현
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 춘계학술발표논문집
    • /
    • pp.357-360
    • /
    • 2000
  • 최근에는 텍스트기반 검색 기법의 단점들을 극복하기 위하여 멀티미디어 데이터에서 내용으로 표현되는 특징데이터(Feature data)를 자동으로 추출하여 이를 기반으로 검색을 하는 내용기반 검색기법(Content- Based Retrieval Technique)에 대한 연구가 활발하다. 그러나 내용기반 검색 시스템에서 데이터 수가 무한히 많아질 경우, 찾고자 하는 이미지를 검색하는데 정확성과 시간면에서 효율성이 떨어진다. 따라서 방대한 이미지 데이터를 보다효과적으로 검색하고 저장하기 위해서는 유사성이 높은 이미지들을 서로 묶어 그룹화하고 그룹별 특징을 분석하여 인덱스화 함이 필요하다. 이에 본 논문에서는 그룹화를 위해 각각의 이미지 객체에 대하여 웨이브릿변환 (Wavelet Transform) 기법과 질감 특징( Texture Feature) 값 추출을 통해 그룹간에 가지는 특징값을 분석 비교하였다.

  • PDF

국부 최대값과 정렬을 이용한 영상 변형에 강인한 해리스 특징점 선택 방법 (Image Transformation Invariant Harris Corner Selection Method Using Local Maxima and Sorting)

  • 이준우;조익환;조아영;이기선;정동석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.243-244
    • /
    • 2007
  • 다양한 디지털 컨텐츠를 검색하기 위해 다양한 디스크립터(Descriptor)가 제안되어 왔다. 그 중 특징점을 기반으로 하는 디스크립터를 이용하여 원본 영상과 기하학적 변형을 포함하는 다양한 변형 영상을 서로 정확하게 정합시키기 위해서는 각 영상에서 동일한 위치에 동일한 개수의 특징점이 추출되는 것이 유리하다. 본 논문에서는 널리 사용되고 있는 해리스(Harris) 특징점 추출 방법을 기반으로 국부 최대값과 정렬을 이용하여 원하는 개수의 특징점을 선택하는 방법을 제안한다.

  • PDF

Dominant 컬러쌍 정보와 Color Correlogram을 이용한 객체기반 영상검색 (Object-based Image Retrieval Using Dominant Color Pair and Color Correlogram)

  • 박기태;문영식
    • 전자공학회논문지CI
    • /
    • 제40권2호
    • /
    • pp.1-8
    • /
    • 2003
  • 본 논문에서는 컬러 영상에서 Dominant 컬러쌍 정보를 이용한 객체기반 영상검색 기법을 제안한다. 기존의 대부분 연구에서는 관심있는 객체를 포함한 영상 전체에 대해 특징값을 추출하여 유사 영상을 검색함으로써 배경으로 인해 검색 성능이 나빠지는 단점이 있었다. 본 논문에서는 관심있는 객체 정보만 질의로 사용하고 DB내의 영상들에 대해서도 객체가 존재할 수 있는 후보 영역을 추출한 후 유사도를 측정하는 방법을 제안한다. 제안하는 기법은 평탄 컬러 영역들이 이웃하고 있는 경계부분에서의 Dominant 컬러쌍 정보를 추출하여 특징값으로 사용하였으며, 유사도는 색상을 이용한 Color Correlogram 방법을 사용하였다. 제안하는 Dominant 컬러쌍 특징값은 이동, 회전, 그리고 크기변화에 강건한 특성을 갖는다. 질의 객체 영상에 대해서 DB내에 있는 각각의 영상에 대해 영상 전체를 비교하는 것이 아니라 객체가 존재하는 영역을 추출한 후 유사도를 측정함으로써, 배경 컬러에 의해 영상이 잘못 검출되는 오류가 줄고, 검색 성능이 향상됨을 실험을 통해 확인하였다.

DWT를 이용한 MR 일반영상과 분자영상 특징추출 (Feature values of DWT using MR general imaging and molecular imaging)

  • 박대성;최규락;한병성;안병주
    • 한국방사선학회논문지
    • /
    • 제6권5호
    • /
    • pp.409-414
    • /
    • 2012
  • 본 연구는 나노 조영제를 이용하여 분자영상을 획득하고 이와 동일한 조건의 일반영상을 획득하여 두 영상을 DWT(Discrete Wavelet Transform)로 변환하여 분자영상과 일반영상간의 차이를 분석하였다. 현재까지의 분자영상 기술은 나노 조영제를 이용한 MR 영상과, PET를 이용한 분자영상 연구가 주류를 이루고 있다. MRI를 이용한 동일병변의 일반영상과 분자영상을 DWT로 분석한 결과 병변이 존재하는 블록에서는 병변이 있음을 예시하여 주는 고주파 특징값이 일반영상과 분자영상 모두 더 높게 나타나는 것을 알 수 있었다. 특히 고주파 영역의 특징추출값은 분자영상이 더 높게 나타남을 알 수 있었다.

홍채인식시스템 성능향상을 위한 유클리드 거리값과 멀티데이터 사용에 관한 연구 (A Study of The Use of Multidata and Euclidean Distance for The Robust Iris Recognition System)

  • 손진호;장자인;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.628-630
    • /
    • 2004
  • 홍채 인식 시스템은 영상 획득과 전처리, 특징 추출, 등록, 인증/증명의 다섯 단계로 나누어진다. 시스템의 성능 향상을 위해서는 모든 부분이 중요하나 본 논문에서는 특징 추출에 중심을 두고 양쪽 눈의 홍채 정보를 결합하여 실험하였다. 양쪽 눈의 홍채 정보를 결합했다 함은 영상 획득과 전처리를 거쳐 얻어진 양쪽 눈 영상에서 하위 90도 영역을 잘라 붙여서 홍채 영상을 만들고 그 데이터를 사용했음을 의미한다. 특징 추출에는 2단계의 wavelet transform을, 인식에는 유크리드 거리값을 사용하였다. 실험을 통해서 단일 홍채 시스템에 비해 향상된 결과를 얻을 수 있었다.

  • PDF

은닉마코프모델 기반의 비정상 행동 인식 연구 (A Study on Abnormal Behavior Recognition based on HMM)

  • 김영남;김준홍;김문현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1330-1332
    • /
    • 2015
  • 최근 지능형 감시 시스템에서 비정상 행동들을 자동으로 감지하는 연구가 활발히 진행되고 있다. 그러나 해결하기 힘든 몇 가지 이슈들이 있는데, 주어진 입력 영상에서 군중들이 중첩될 때 각각의 객체를 인식하는데 어려움이 있다는 점과 비정상 행동을 나타내는 훈련 데이터셋이 제한적이라는 점이다. 이러한 문제들을 해결하기 위해 우리는 군중 영상에서 비정상 행동들을 인식하는 새로운 프레임워크를 제안한다. 제안된 방법은 크게 특징추출모듈과 추출된 특징들을 이용한 행동인식모듈로 구성된다. 중첩문제를 해결하기 위해 움직임 에너지와 고정 에너지를 특성으로 정의하였고 위에 언급한 특징추출모듈에서 두 에너지 값을 계산한다. 그리고 정상/비정상 행동들은 HMM과 최적의 임계값을 도출하는 알고리즘을 사용하는 행동인식모듈에 의해 분류된다. 우리가 제안한 방법은 인공 데이터셋과 실제 비디오 영상 데이터셋을 이용한 실험에 의해 증명한다.

한글 모음의 구조적 특징을 이용한 문자영역 검출 기법 (Character Region Detection Using Structural Features of Hangul Vowel)

  • 박종천;이근왕;박형근
    • 한국산학기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.872-877
    • /
    • 2012
  • 본 논문은 한글 모음의 구조적 특징을 이용하여 자연영상에 포함된 한글 문자영역을 검출하는 기법을 제안하였다. 자연 영상을 명도영상으로 변환하고 에지 및 연결요소 기반 방법으로 특징값을 추출하며, 추출된 특징값은 필터링을 수행하여 한글 문자의 특징에 맞지 않는 특징값을 제거하여 한글 문자영역 병합을 위한 후보를 선정한다. 선정된 후보 특징값은 한글 자소 병합 알고리즘으로 하나의 문자로 병합하여 후보 문자영역으로 검출하고, 한글 문자 유형 판별 알고리즘으로 한글 문자영역 여부를 판별함으로서 최종적인 한글 문자영역을 검출한다. 실험결과, 복잡한 배경을 갖고 다양한 환경에서 촬영된 영상에서 한글 문자영역을 효과적으로 검출하였고, 제안한 문자영역 검출 방법은 향상된 검출 결과를 보여 주었다.