ECG based user identification method using neural networks

신경회로망을 이용한 심전도(ECG)기반의 생체인식

  • Min, Chul-Hong (School of Information, Communications & Electronics Engineering Catholic University of Korea) ;
  • Kim, Tae-Seon (School of Information, Communications & Electronics Engineering Catholic University of Korea)
  • 민철홍 (가톨릭대학교 정보통신전자공학부) ;
  • 김태선 (가톨릭대학교 정보통신전자공학부)
  • Published : 2006.06.21

Abstract

본 논문은 심전도의 리드III 파형을 이용하여 신원확인이 가능한 생체인식 기술을 제안한다. 인식을 위한 심전도의 리드III파형을 특징추출하기 위해 $4{\sim}30Hz$의 대역통과 필터를 사용하여 피크(peak)점만 남겨놓고 모든 잡음을 제거한 후, AAV(absolute amplitude value)를 이용하여 피크점의 값을 추출한다. 추출된 피크 점은 원신호의 피크점과 같으므로 이를 기준으로 전체파형을 특징추출을 위한 단위 파형으로 분리한다. 분리된 신호는 정의된 4가지 형태(type)의 파형 중 가장 유사한 파형타입으로 분류되며, 분류된 형태를 기준으로 꼭지점, 최대 피크점, 최소 피크점, 최대.최소 피크점 비, 파형 간격(interval) 및 파형의 세부 모양 등 총22가지의 특징들을 추출한다. 추출된 특징들은 오류역전파 신경회로망(back-propagation neural network)의 입력으로 사용되었으며, 성인남녀 31명을 대상으로 제한된 파형 내에서 실험한 결과 100%의 인식률을 보였다.

Keywords