• Title/Summary/Keyword: 특성엑스선

Search Result 80, Processing Time 0.028 seconds

Development of the External Fixator for a Bone Fracture (골절치료용 체외고정기기 개발을 위한 연구)

  • 윤희열;한정수;한창수
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.317-322
    • /
    • 2002
  • In this paper, the problems of the external fixator that have developed for a distal radius fracture so far are analyzed, and accordingly, the characterizations, which must have a prototype, are arranged. C-Arm is used. This instrument makes it possible for the real play of the internal body by x-ray permeability. From this data. it is possible to induce important design factors Finally. a basic mechanism, which has to be applied, is decided, and the Solid Edge program, which uses a 3-D design tool, completes then total instrument design.

The Characteristics of Residual Stresses in the Welded Joint of P92 Steel for Fossil Power Plant by the X-ray Diffraction (X-ray 회절을 이용한 화력발전소용 P92 강 용접부의 잔류응력 특성)

  • Hyun, Jung-Seob;Yoo, Keun-Bong;Choi, Hyun-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.116-123
    • /
    • 2008
  • In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or causes the stress corrosion cracking and fatigue fracture. Especially, the accidents due to the residual stress occurred at the weld parts of high-temperature and high-pressure pipes and steam headers. Also, the residual stress of the welded part in the recently constructed power plants has been brought into relief as the cause of various accidents. The aim of this study is the measurement of the residual stress using the x-ray diffraction method. The merits of this are more accurate and applicable than other methods. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The variables of tests are the post-weld heat treatment, the surface roughness and the depth from the original surface. The test results were analyzed by the distributed characteristics of the full width at half maximum intensity (FWHM) in x-ray diffraction intensity curve and by the relation of hardness with FWHM.

Monte-Carlo Simulation on Properties of X-ray Detector with Multi-layer Structure (몬테카를로 시뮬레이션을 통한 다층 구조 엑스선 검출기의 특성 평가)

  • Shin, Jung-Wook;Park, Ji-Koon;Seok, Dea-Woo;Lee, Chae-Hoon;Kim, Jea-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.427-430
    • /
    • 2003
  • The properties of digital X-ray detectors depend on the absorption extent of X-rays, the generated signal of each X-ray photon and the distribution of the generated signal between pixels. In digital X-ray detector with single layer, signal is generated by X-ray photon captured in photoconductor. In X-ray detector with multi structure that scintillator formed above the top of photoconductor, signal is generated both by X-ray photon captured each in scintillator and photoconductor. X-ray detector with multi structure is generated more signal than single layer detector. In this paper, we simulated absorption fraction of X-ray detector with multi-layer using Monte Carlo program. The results compared with single-layer detector to be formed scinillator or photoconductor.

  • PDF

Monte Carlo simulation of the electronic portal imaging device using GATE

  • Chung, Yong-Hyun;Baek, Cheol-Ha;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.3
    • /
    • pp.11-16
    • /
    • 2007
  • In this study, the potential of a newly developed simulation toolkit, GATE for the simulation of electronic portal imaging devices (EPID) in radiation therapy was evaluated by characterizing the performance of the metal plate/phosphor screen detector for EPID. We compared the performances of the GATE simulator against MCNP4B code and experimental data obtained with the EPID system in order to validate its use for radiation therapy.

  • PDF

Effect on Physiological Metabolism of Calcium Ion at Cell Membrane Model of Parathyroid which Irradiated by High Energy X-ray (고에너지 엑스선을 조사한 부갑상선의 세포막모델에서 칼슘이온의 생리학적 대사에 미치는 영향)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.2
    • /
    • pp.141-150
    • /
    • 2022
  • The initial co-transport and counter-transport permeate transport characteristics of calcium ion at epithelial cell membrane model in parathyroid which irradiated by high energy x-ray(linac 6 MV) was investigated. The epithelial cell membrane model used in this experiment was a polysulfonated copolymerized membrane of poly(PS-DVB: polystyrene-divinylbenzene). The difference of sorbed water in membrane, fixed carrier concentration(SO32-), initial pH value, OH- concentration were occurred at difference of Ca2+concentration and quantity of parathyroid hormone, respectively. The initial co-transport and counter-transport permeate flux of Cl-, OH-, Ca2+ on fixed carrier concentration(SO32-) and initial pH value of irradiated membrane was found to be decreased than non-irradiated membrane. The initial co-transport and counter-transport permeate flux of Ca2+ on fixed carrier concentration (SO32-), initial pH value, OH- concentration in irradiated membrane were found to be decreased about 2.68 ~ 6.87 times, about 1.42 ~ 1.63 times, about 2.07 ~ 1.672 times than non-irradiated membrane, respectively. As a result, the quantity of parathyroid hormone was decreased at irradiated membrane than non-irradiated membrane. The decrease of parathyroid hormone was occurred at hypoparathyroidism and osteoporosis, parathyroiditis, and so on. As the parathyroid hormone in epithelial cell membrane model were abnormal, cell damages were appeared at cell.

Study on the effect of DSSC(Dye Sensitizer Solar Cell) Material on the electrical properties of Mercuric Iodide (염료감응형태양열 물질이 요오드화수은의 전기적 특성에 미치는 영향에 관한 연구)

  • Cho, Gyu-Seok;Park, Ji-koon;Heo, Seung-Wook;Song, Yong-keun;Han, Moo-Jae;Kim, Kum-Bae;Choi, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.525-529
    • /
    • 2017
  • As a photoconductive material with a high X-ray sensitivity, many researches about mercury iodide has been carried out to substitute for amorphous selenium. However, it has many limitations in commercialization because of the high leakage current. In this study, we fabricated $HgI_2$ unit-cells with mixed silicon oxide($SiO_2$) and titanium oxide($TiO_2$) to reduce a high leakage current and we evaluated an electrical properties of the fabricated unit-cells. As a result, we confirmed that both mixtures were effective in reduing the leakage current of the $HgI_2$ and x-ray sensitivity were significantly increased in fabricated $HgI_2-TiO_2$ unit-cell.

Case of Developing Analysis Model for Recoil System for Automatic Gun (자동포용 주퇴복좌장치의 해석모델 개발 사례)

  • Noh, Dae-Kyung;Kang, Young-Ky;Ji, Jae-Do;Park, Jin-Saeng;Jang, Joo-Sup
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.35-41
    • /
    • 2015
  • Recoil system for 40mm automatic gun is a device developed to absorb the shock of explosion. It is impossible to conduct pinpoint strike due to recoil if very high explosive shock, which is generated when an automatic gun fires shells, can't be absorbed. This study covers development and verification of analysis model for recoil system by utilizing a multi-domain software. The research process is as in the following. First, an analysis model is developed to verify damping characteristics through understanding of design intention. Second, environment which is identical to a field test is set up on analysis tool after putting explosive force that is measured through the test into the analysis model. Finally, the analysis model for recoil system using the multi-domain software is verified if it has effectiveness with a comparison between internal pressure of the recoil system along with displacement of gun barrel and the field test result.

Fabrication of Miniature Radiation Sensor Using Plastic Optical Fiber for Medical Usage (플라스틱 광섬유를 이용한 초소형 의료용 방사선 센서 제작)

  • Hwang, Young-Muk;Cho, Dong-Hyun;Cho, Hyo-Sung;Kim, Sin;Lee, Bong-Soo
    • Journal of radiological science and technology
    • /
    • v.28 no.1
    • /
    • pp.9-12
    • /
    • 2005
  • In this study, film type radiation sensor tips are fabricated for remote sensing of X or g-ray with inorganic scintillators and plastic optical fiber. The visible range of light from the inorganic scintillator that is generated by X and g-ray is guided by the plastic optical fiber and is measured by optical detector and power-meter. It is expected that the fiber-optic radiation sensor which is possible to be developed based on this study is used for remote, fast and exact sensing of X or g-ray because of its characteristics such as very small size, light weight and no interference to electromagnetic fields.

  • PDF

Characteristies of the background fabric and coloring of "Buseoksa Temple Gwaebul" in the possession of the National museum of Korea (국립중앙박물관 소장 <부석사 괘불>의 바탕직물과 채색 특성)

  • Park Seungwon;Yu Heisun;Park Jinho;Cheon Juhyun
    • Conservation Science in Museum
    • /
    • v.31
    • /
    • pp.1-20
    • /
    • 2024
  • The "Buseoksa Temple Gwaebul" (1684, K969) in the possession of the National Museum of Korea is a large Buddhist hanging scroll produced for outdoor rituals (gwaebul) at the eponymous temple. The painting demonstrates the most complex composition among the existing Buddhist hanging scrolls as it depicts the Shakyamuni Buddha in the lower middle, surrounded by the Vairocana Buddha, Medicine Buddha, and Amitabha Buddha. This study examines the characteristics of the background fabric and the production methods of the scroll from Buseoksa Temple and explores the characteristics of the coloring techniques by integrating the results of a non-destructive analysis to determine the materials used for coloring. The gwaebul comprises a total of 13 panels, with 11 panels arranged side by side and one panel each added to the top and bottom. The background fabric of the painting consist of semi-transparent silk tabby for the nine panels in the center, and silk tabby for the four panels surrounding the four sides. The coloring materials used to paint the scroll were analyzed using X-ray fluorescence, and were confirmed to be inorganic pigments of red, yellow, green, blue, and white. For some parts painted in yellow and blue, the colors were expressed by first applying light white pigment before adding organic pigments. In addition, ink was used for the black lines and gold leaf was used for the patterns of the Buddhist robes. X-ray irradiation enabled the determination of the location and technique of coloring according to each pigment color by highlighting the difference in brightness depending on the main component and the thickness of each pigment.

Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube (불소화 일라이트 및 탄소나노튜브 강화 에폭시 복합재의 기계적 및 열적 특성)

  • Lee, Kyeong Min;Lee, Si-Eun;Kim, Min Il;Kim, Hyeong Gi;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.285-290
    • /
    • 2016
  • To improve properties of epoxy composites, surfaces of the illite and carbon nanotube (CNT) were treated by fluorine gas. The fluorinated illite and CNT were then characterized by X-ray photoelectron microscopy (XPS) and the mechanical and thermal properties of their composites were evaluated. The tensile and impact strengths and thermal stability of the composites increased upto about 59%, 18% and 124%, respectively compared to those of the neat epoxy. Improvements of mechanical and thermal properties in the composites were attributed that the fluorination of illite and carbon nanotube helps to enhance the dispersion in epoxy resin and interfacial interaction between them.