• Title/Summary/Keyword: 토체

Search Result 46, Processing Time 0.023 seconds

A Study of Load Reduction Effect on Conduits Using Compressible Inclusion (압축재 포설에 따른 매설관거의 하중저감 효과 평가)

  • Kim, Jin-Man;Choi, Bong-Hyuck;Cho, Sam-Deok;Joo, Tae-Sung;Kim, Ho-Bi;Rhee, Jong-Wha
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.2
    • /
    • pp.3-11
    • /
    • 2003
  • Researches on the induced trench method using compressible materials such as clay, mud, straw, or EPS block have been performed to reduce the load acting on buried conduits under a high fill. The induced trench method has the problems that the arching area due to the compressible arching material is one dimensional or localized in a narrow zone. The main purpose of this study is to solve the problems of the induced trench method mentioned above. The various types of laboratory model tests are conducted to find the effects of the variations of EPS block width, multilayer application, soil density, and diameter of the flexible steel pipe. A series of model tests was conducted to evaluate the reduction of earth pressure on conduits using EPS block. Based on modeling test it is found that the magnitude of vertical earth pressure on conduits was reduced about 60% compared with conventional flexible conduit systems.

  • PDF

Numerical Analysis on Drain Capacity and Vegetation Potential of Unsaturated Made-Planting Soil (불포화 인공 식재 지반의 배수 성능과 식생 가능 조건에 대한 수치해석적 분석)

  • Kim, Sung-Min;Kim, Choong-Eon;Jung, Young-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.6
    • /
    • pp.33-41
    • /
    • 2016
  • This study attempted to investigate drain capacity and vegetation potential of made-planting soil via finite element simulations. Engineering drain capacity of made-planting soil can be evaluated by an analysis of unsaturated soils. In a perspective for vegetation landscape, it is necessary to check whether the minimum amount of water in the made-planting soil can be supplied for the survival of plants. Herein, 1-m high soil column covered by made-planting soil were numerically simulated. Numerical results showed that how the coefficient of permeability of saturated soil and soil-water characteristics of unsaturated soil are considered significantly influences the drain capacity of soils. Variation in the volumetric water content within the Least Limiting Water Range (LLWR) provides us with information on whether the soil can contain a sufficient amount of water for the plants to survive the drought.

Slope Stability Analysis Considering Reinforcing Effects of Geosynthetics (토목섬유의 보강효과를 고려한 사면안정해석)

  • Kim, Kyeong-Mo;Kim, Hong-Tack;Lee, Hyung-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2005
  • Generally, to evaluate a slope stability of the geosynthetic reinforced soil slope, the modified version of limit equilibrium method can be used. In most cases, resisting effects of reinforcement are dealt with considering an increased shear strength on the potential slip surface. However, it is not clear that the methods satisfy all three equilibrium equations. In this study, the new slope stability analysis method in which not only reinforcing effects of geosynthetics can be considered but also all three equilibrium equation can be satisfied is proposed. A number of illustrative examples, including published load test of large-scale reinforced retaining wall and centrifuge model tests on the geotextile reinforced soil slopes, are also analyzed. As a result, it is shown that the newly suggested method produces a relatively accurate factor of safety.

  • PDF

Research about Application Possibility of Afforestation Reinforced Soil Steep Slope by Nonwoven Geotextile (부직포를 활용한 급경사 녹화보강토공법의 적용 가능성에 관한 연구)

  • Cho, Yong-Seong;Koo, Ho-Bon;Lee, Choon-Kil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.239-245
    • /
    • 2006
  • The steep slopes have been increased of new roads, industrial site development and large scale residential development. The preservation administration and steep slope construction are currently investigated by many researchers in Korea. However, concrete retaining wall or reinforced soil (i.e. Block or Pannel) are being applied for the steep slope, which results in the front face form of the structure being limited. This research investigates the method that can make up afforestation environment-friendly circumstances during the construction of steep slope structure. It is considered that steep slope reinforced structure would be possible based on the monitoring results about earth pressure, horizontal displacement and consolidation quality generated during the construction of whole constructing reinforced structure. Also, there no problems in grassy surface, drainage, and deformation in spite of rainy season after construction period and until now. So that the seeding soil layer surface reinforced soil method could be adopt for steep slope reinforced structure and others.

Seismic Behavior Analysis of a Bridge Considering stiffness Degradation due to Abutment-Soil Interaction (교대-토체의 강성저하를 고려한 교량의 지진거공분석)

  • 김상효
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.357-366
    • /
    • 2000
  • Longitudinal dynamic behaviors of a bridge system under seismic excitations are examined with various magnitudes of peak ground accelerations. The stiffness degradation due to abutment-soil interaction is considered in the bridge model which may play the major role upon the global dynamic characteristics. The idealized mechanical model for the whole ridge system is proposed by adopting the multiple-degree-of-freedom system which can consider components such as pounding phenomena friction at the movable supports rotational and translational motions of foundations and the nonlinear pier motions. The abutment-soil interaction is simulated by utilizing the one degree-of-freedom system with nonlinear spring. The stiffness degradation of the abutment-soil system is found to increase the relative displacement under moderate seismic excitations.

  • PDF

Shear Strength and Permeability Characteristics of Soil Body Reinforced with Linear and Planar Reinforcing Materials (선형보강재와 평면보강재를 적용한 토체의 전단강도 및 투수특성)

  • 차경섭;장병욱;우철웅;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.162-171
    • /
    • 2003
  • Traditional methods of earth reinforcement consist of introducing strips, fabrics, or grids into an earth mass. Recently, discrete fibers are simply added and mixed with the soil, much the same as cement, lime or other additives. The advantages of randomly distributed fibers is the maintenance of strength isotropy, low decrease in post-peak shear strength and high stability at failure. In this study, new composite reinforcement structures which consist of geotextile and randomly distributed discrete fibers were examined their engineering properties, such as shear strength of the composite reinforced soil and permeability of short fiber reinforced soil. The increments of shear strength of composite reinforced soils were the sum of increments by fiber and woven geotextile, respectively. The permeability of short fiber reinforced soil was increased with fiber mixing ratio.

Analysis on Long-Term Behavior of Reinforced Clayey Soil by Model Test (모형실험에 의한 보강 점성토체의 장기적 거동 분석(지반공학))

  • 이상호;김철영;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.471-476
    • /
    • 2000
  • Long-term behavior of reinforced clayey soil by model tests were performed to investigate the effect of reinforcement during loads and under static loads. In order to determine proper contents by weight of monofilament polypropylene fiber and calcium carbonate, the drying shrinkage and compressive strength tests had been conducted before model tests. Model tests were run on a clayey soil mixed with or without reinforcement and test specimen in test apparatus was placed in air dry for 7days before load application. In the case of fiber reinforced soil, the horizontal strain was lower than others during loads because the presence of fibers increased the soil's resistance to deformation. All of reinforced clayey soil, horizontal strain decreased as the water content decrease under static loads.

  • PDF

The Theoritical Analysis of the Slope Stability subjected to Seepage Force (침투력을 고려한 사면안정의 이론적 해석)

  • Gi-Bong Choi
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.151-155
    • /
    • 1996
  • The main purpose of this study was to develop a useful method for analysing slope stability by seepage force. The stability of an embankment impounding a water reservoir is highly depend upon the location of seepage line with the embankment, it is important to illustrate the seepage phenomenon. Of particular interest is the stability following a rapid rise change of reservoir level. Seepage forces in embankments are easily determined if frictional forces are expressed in relation to hydraulic gradient i. Seepage forces can combine with soil weights to improve stability or worsen it, depending on the direction in which the forces act ;n relation to the geometric cross section.

  • PDF

Evaluation of Bearing Capacity of Multi-layered Soil Deposits (개별요소법에 의한 다층지반의 지지력 산정)

  • Park Jun;Jee Sung-Hyun;Lee Seung-Rae;Park Hyun-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.63-69
    • /
    • 2006
  • In this paper, a method is presented for estimating the bearing capacity of shallow foundations based on the Discrete Element Method (DEM). By applying Winkler-springs for accounting for the compatibility between soil blocks, the proposed method can estimate the state of stress at failure surface and the ultimate bearing capacity. For the investigation of the application of the method, example problems about shallow foundations on the single layer and two layers soil are analyzed.

Behavior Characteristics of Composite Reinforced Earth with Improved Soil Surface and Geogrid-reinforced Backfill (지반개량재 전면토체와 지오그리드 보강 배면토체로 형성된 복합보강토의 거동특성)

  • Bhang, In-Hwang;Kim, Tae-Heon;Kim, You-Seong;Kim, Jae-Hong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.27-34
    • /
    • 2016
  • Many steepened slopes have become increasingly advantageous because of the desire to increase land usage and decrease site development costs. The proven concept of tensile reinforcement allows construction of slopes with far steeper face angles than the soils natural angle. Steepened slope face reinforced with improved soil can increase land usage substantially while providing a natural appearance. The paper presents composite reinforced earth with improved soil surface and geogrid-reinforced backfill. For the stability of the steepened slope, the behavior of the composite reinforced earth are validated and verified by case study and numerical analysis. The case study has performed to investigate the deformation of reinforce soil slope for 14 months. Its horizontal behavior by general vertical load shows within the safe range (0.5% of structure height). As a result of numerical analysis and case study, the reinforcement effect of the steepened slope technique using improved soil is sufficient to be constructed as reinforced soil slope.