• Title/Summary/Keyword: 토양지리학

Search Result 88, Processing Time 0.02 seconds

The comparison and chronology of the lower marine terraces in the mid-eastern coast of Korean peninsula (韓反島 中部東海岸 低位海成段丘의 對比와 編年)

  • ;Choi, Seong-Gil
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.2
    • /
    • pp.103-119
    • /
    • 1995
  • This Paper aims to compare the lower marine terraces distributed from Muckho to Gangneung in the mid-eastern coast of Korean peninsula by the geomorphic method of using characteristies of terrace features and terrace deposits, paleosol, and fossil cryogenic structures, and to estimate the age of the lower marine terraces on the basis of the comparisons of those with the characteristics of thalassostatic terrace in adjacent rivers. The 1ower marine terraces in this area can be classified into two levels, i.e., lower marine terrace I and II surfaces, in desending order, according to the difference of former shoreline altitude. The former shoreline heights of the lowerm marine terrace I and II surfaces are 18m and 10m, respectiveiy. The width of the I surface is broader and distributed more continuousiy than that of II surface. Daejin I surface in Muckho coast, and Myeongju and Anin terrace in Gangneung coast could be classified into the lower marine terrace I surface, and Daejin II surfaCe into II surface. The Surface of ancient shore platform of the lower marine terrace I and II surfaces were weathered, and the color of the terrace deposit ranges from red to reddish brown. And this terrace deposit is covered with slope deposit of Last Glacial or fossil periglacial structures (platy structure and vecicle) of Last Glacial are formed in terrace deposit. These facts indicate that the lower marine terrace I and II surfaces had been formed before the Last Glacial, and then affected by chemical weathering under warm environment, finally followed by cold period. But the deposit of the lower marine terrace I surface is more weathered than that of II surface. And pseudogleyed red soil, which is developed in I but not in II surface, could be judged to have been formed in the Last Interglacial culmination stage (Oxygen isotope stage 5e). Therefore, in terms of the degree of weathering of the terrace deposit and the existence of pseudogleyed red soil, the age of both terrace is thought to be a little different. And the characteristics of the above mentioned II surface are accord with those of thalassostatic terrace formed in middle or late period of the Last Interglacial (5e or 5a). Thus on the basis of above all points, the lower marine terrace I and II surfaces in this area could be seen to have formed in the Last Interglacial culmination stage and middle or late period of the Last Interglacial, respectively. Because the lower mamine terrace I surface is broadry distributed in the eastern coast of Korea nPeninsula, the surface could be used to be a key surface in studying Quaternary marine terraces.

  • PDF

Cross-sectional Changes of Ridge Traversing Trail in Jirisan National Park (지리산국립공원 종주등산로의 횡단면 변화 - 노고단~삼도봉 구간을 중심으로 -)

  • Kim, Taeho;Lee, Seungwook
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.2
    • /
    • pp.234-245
    • /
    • 2013
  • In order to examine the amount and rate of soil erosion on Ridge Traversing Trail in Jirisan National Park, a cross-sectional area of hiking trail were monitored at 16 sites in Nogodan - Samdobong section from November 2011 to April 2012. Although all sites demonstrates an enlarged cross-section of trail, the amount of soil erosion varies from site to site: 54.9 to $908.8cm^2$. It suggests that the erosional rate ranges from $0.1cm^2/day$ to $1.72cm^2/day$. The erosional amount is also varied with a trail type: $109.3cm^2$ for a shallow gully-like trail to $573.2cm^2$ for a unilateral trail. However, the cross-sectional change is larger on a sidewall than a tread irrespective of a trail type. The erosional amounts of November to April are smaller than that of May to October. In particular, the erosional amount of November 2011 to April 2012 is smaller than the depositional amount, implying a reduced cross-section of trail. Pipkrake action puts loose soil particles on a sidewall on March and April, and then rainwash due to a heavy rainfall takes them away after May. It seems to be the most predominant erosional process in Ridge Traversing Trail. A sidewall facing north shows a larger amount of erosion than a sidewall facing south. It also implies a difference in the development of a pipkrake according to an aspect. The small amount of erosion and cross-sectional decrease, which is usually observed on April, results from the combined effect of frost heaving, pipkrake action, a small rainfall and a temporary suspension of trampling. It is necessary to establish the monitoring system of trail erosion in terms of the management of hiking trail in a mountain national park.

  • PDF

Rates and Factors of Path Widening in Seongpanak Hiking Trail of Mount Halla, Jeju Island (한라산 성판악 등산로 노폭의 확대 속도와 요인)

  • Kim, Tae-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.3
    • /
    • pp.296-311
    • /
    • 2008
  • In order to examine the rates and factors of path widening in Mount Halla, the retreat of path sidewalls was monitored at 32 sites of Seongpanak Hiking Trail located between 875 m and 1,400 m in elevation. The mean rate of sidewall retreat for the period 2002-2008 is 50.6 mm, equivalent to 10.0 mm/yr. The retreat rate of frozen period is 19.3 mm/yr, while the rate of unfrozen period is 4.3 mm/yr. The latter is divided into the rainy and dry periods that exhibit the retreat rates of 5.9 mm/yr and 2.9 mm/yr, respectively. The retreat rate of sidewalls is also varied with seasons; winter shows the maximum rate of 42.2 mm/yr, while summer exhibits the minimum rate of 1.3 mm/yr. Spring and fall show the intermediate rates of 13.9 mm/yr and 6.4 mm/yr, respectively. Soil hardness and elevation are not closely related to the retreat rate of sidewalls, even though the retreat rate is larger at the north-faced sidewalls than the south-faced sidewalls during the frozen period. Pipkrake is likely to be the most important factor contributing to the path widening in that the retreat of winter months accounts for 76.7% of the total retreat. The hiking trail is placed under the climatic conditions which develop pipkrake in 85 days annually. In addition, it is usual to observe the path sidewall covered with pipkrake in the freezing month of December and the thawing months of March and April. On the other hand, deflation and rainsplash erosion are not important due to the weak wind speed and the forested trail. Rainwash is also insignificant in that the path has been almost paved to mitigate trampling effects. Although biological activity is not dominant, hikers cause a large retreat of sidewalls in the thawing months since they would walk on the sidewalls to avoid snow-melting pools on the path.

Agricultural Policies and Geographical Specialization of Farming in England (영국의 농업정책이 지리적 전문화에 미친 영향 연구)

  • Kim, Ki-Hyuk
    • Journal of the Korean association of regional geographers
    • /
    • v.5 no.1
    • /
    • pp.101-120
    • /
    • 1999
  • The purpose of this study is to analyze the impact of agricultural polices on the change of regional structure based on the specialization during the productivism period. Analysis are carried on through the comparison of distribution in 1950s and 1997. Since the 1950s, governmental policy has played a leading role in shaping the pattern of farming in Great Britain. The range of British measures have also been employed in an attempt to improve the efficiency of agriculture and raise farm income. Three fairly distinct phase can be identified in the developing relationship between government policies and British agriculture in the postwar period. In the 1st phase, The Agricultural Act of 1947 laid the foundations for agricultural productivism in Great Britain until membership of the EC. This was to be achieved through the system of price support and guaranteed prices and the means of a series of grants and subsidies. Guaranteed prices encouraged farmenrs to intensify production and specialize in either cereal farming or milk-beef enterprise. The former favoured eastern areas, whereas the latter favoured western areas. Various grants and subsidies were made available to farmers during this period, again as a way of increasing efficiency and farm incomes. Many policies, such as Calf Subsidy and the Ploughing Grant, Hill cow and Hill Sheep Schemes and the Hill Farming and Livestock Rearing Grant was provided. Some of these policies favoured western uplands, whilst the others was biased towards the Lake District. Concentration of farms occured especially in near the London Metropolitan Area and south part of Scotland. In the 2nd stage after the membership of EC, very high guaranteed price created a relatively risk-free environment, so farmers intensified production and levels of self-sufficiency for most agriculture risen considerably. As farmers were being paid high prices for as much as they could produce, the policy favoured areas of larger-scale farming in eastern Britain. As a result of increasing regional disparities in agriculture, the CAP became more geographically sensitive in 1975 with the setting up of the Less Favoured Areas(LFAs). But they are biased towards the larger farms, because such farms have more crops and/or livestock, but small farms with low incomes are in most need of support. Specialization of cereals such wheat and barely was occured, but these two cereal crops have experienced rather different trend since 1950s. Under the CAP, farmers have been paid higher guaranteed prices for wheat than for barely because of the relative shortage of wheat in the EC. And more barely were cultivated as feedstuffs for livestock by home-grown cereals. In the 1950s dairying was already declining in what was to become the arable areas of southern and eastern England. By the mid-1980s, the pastral core had maintained its dominance, but the pastoral periphery had easily surpassed arable England as the second most important dairying district. Pig farming had become increasingly concentrated in intensive units in the main cereal areas of eastern England. These results show that the measure of agricultural policy induced the concentration and specialization implicitly. Measures for increasing demand, reducing supply or raising farm incomes are favoured by large scale farming. And price support induced specialization of farming. And technology for specialization are diffused and induced geographical specialization. This is the process of change of regional structure through the specialization.

  • PDF

Quaternary Sea Levels Estimated from River Terraces of the Ungcheon River, Midwestern Coast of South Korea (態川川流域의 河成段丘로부터 推定되는 舊汀線高度와 그 意義, 韓國 西海岸의 第四紀 環境變化 究明에 있어서 臨海山岳地域 小河川 河成段丘 硏究의 重要性 考察)

  • Choi, Seong-Gil
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.3
    • /
    • pp.613-629
    • /
    • 1996
  • River terraces of glacial and interglacial periods are most developed in the Ungcheon River, midwestern coastal region of south Korea. Among these terraces, interglacial river terraces correspond to the thalassostatic terraces of eastern coastal region of Korea. Thus the former shoreline altitudes of the coastal region around Ungcheon River can be estimated by using relative heights of these interglacial thalassostatic terraces of Ungcheon River The former shoreline altitudes estimated from interglacial thalassostatic terraces of Ungcheon River are 80m, 50${\sim}$60m, 40${\sim}$45m, 30m, 25m(?), 15${\sim}$20m, and 10m. These estimates are almost identical with those of Quaternary sea levels of eastern coastal region. Among the above estimates of Ungcheon River, the former shoreline altituded of 15~20m and 10m correspond to the ancient sea levels of $\pm$18m and $\pm$10m of eastern coastal region which were injudged as the last interglacial culmination period and late warmer period of the last interglacia(5e and 5a substages of oxygen isotope stage), respectively. Therefore there is a possibility that the rest of the above former shoreline altitudes of the coastal region aroune Jngcheon River also correspond to those of eastern coastal region. On the basis of the above possibility it can be proposed that the eastern and western coastal region of Korean Peninsula have undergone tectonic uplift of equall amount since the middle Quaternary Period.

  • PDF

Morphogenetic Environment of Jilmoe Bog in the Odae Mountain National Park (오대산국립공원 내 "질뫼늪"의 지형생성환경)

  • Son, Myoung-Won;Park, Kyeong
    • Journal of the Korean association of regional geographers
    • /
    • v.5 no.2
    • /
    • pp.133-142
    • /
    • 1999
  • The wetland is very important ecologically as a habitat of diverse organisms. The purpose of this paper is to elucidate the morphogenetic environment of Jilmoe Bog found in the Odae Mountain National Park Jilmoe Bog is located in the high etchplain(1,060m) where Daebo Granite which had intruded in Jura epoch of Mesozoic era has weathered deeply and has uplifted in the Tertiary. The annual mean temperature of study area is $5.3^{\circ}C$, the annual precipitation is 2,888mm. The minimun temperature of the coldest month(january) is below $-30^{\circ}C$ and the depth of frozen soil is over 1.6m. Jilmoe bog consists of a large bog and a small bog. The length of the large bog is 63m and its width is 42m. The basal surface of Jilmoe bog is uneven. Jilmoe bog is a string bog fanned due to frost actions. In String bog, its surface is wavy with stepped dry hills and net-like troughs crossing hill slope. It seems that string bog is related to the permofrost or seasonal permofrost of cold conifer forest(taiga) zone(where the depth of frozen soil is very deep in the least in winters). String bog is a kind of thermokarst that frozen soil thaws differentially locally in declining permofrost and ground surface becomes irregular. There is turf-banked terracette of width $30{\sim}40cm$ in the headwall of small cirque-type nivation hollow formed at footslope of Maebong mountain around Jilmoe bog. This turf-banked terracette is formed by the frost growth of soil water below grass mat in periglacial climate environment. Where water is plentiful such as a nivation follow${\sim}$valley corridor and a headwall of valley, turf patterned grounds of width $30{\sim}50cm$ are found. This turf patterned ground is 'unclassified patterned ground', earth hummock. In conclusion, Jilmoe bog is a string bog of thermokarst that the relief of ground surface is irregular according to locally differentially thawing of permofrost(frozen soil). Jilmoe bog is high moor, its surroundings belongs to periglacial environment that turf-banked terracette and turf patterned ground are fanned actively.

  • PDF

Geomorphic Features of Bing-gye Valley Area(Kyongbuk Province, South Korea) -Mainly about Talus- (의성 빙계계곡 일대의 지형적 특성 -테일러스를 중심으로-)

  • Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.49-64
    • /
    • 1998
  • Bing-gye valley(Kyongbuk Province, South Korea) is well known as a tourist attraction because of its meteorologic characteristics that show subzero temperature during midsummer. Also, there are some interesting geomorphic features in the valley area. Therefore, the valley is worth researching in geomorphology field. The aim of this paper is to achieve two purposes. These are to clarify geomorphic features on talus within Bing-gye valley area, and to infer the origin of Bing-gye valley. The main results are summarized as follows. 1) The formation of Bing-gye valley It would be possible to infer the following two ideas regarding the formation of Bing-gye valley. One is that the valley was formed by differential erosion of stream along fault line, and the other is that the rate of upheaval comparatively exceeded the rate of stream erosion. Especially, the latter may be associated with the fact that the width of the valley is much narrow. Judging that the fact the width of the valley is much narrow, compared with one of its upper or lower valley, it is inferred that Bing-gye valley is transverse valley. 2) The geomorphic features of talus (1) Pattern It seems to be true that the removal of matrix(finer materials) by the running water beneath the surface can result in partly collapse hollows. Taluses are tongue-shaped or cone-shaped in appearance. They are $120{\sim}200m$ in length, $30{\sim}40m$ in maximum width. and $32{\sim}33^{\circ}$ in mean slope gradient. The component blocks are mostly homogeneous in size and shape(angular), which reflect highly jointed free face produced by frost action under periglacial environment. (2) Origin On the basis of previous studies, the type of the talus is classified into rock fall talus. When considered in conjunction with the degrees of both weathering of blocks and hardness of blocks, it can be explained that the talus was formed under periglacial environment in pleistocene time. (3) The inner structure of block accumulation I recognize a three-layered structure in the talus as follows: (a) superficial layer; debris with openwork texture at the surface, 1.3m thick. (b) intermediate layer: small debris(about 5cm in diameter) with fine matrix(including humic soil), 70cm thick. (c) basal layer: over 2m beneath surface, almost pure soil horizon without debris (4) The stage of landform development Most of the blocks are now covered with lichen, and/or a mantle of weathering. It is believed that downslope movement by talus creep well explains the formation of concave slope of the talus. There is no evidence of present motion in the deposit. Judging from above-mentioned facts, the talus of this study area appears to be inactive and fossil landform.

  • PDF

Landscape of Erosional Basin in Korea -In case of land-use changes of hills- (우리 나라 침식분지의 경관 -구릉지의 토지이용 변화를 중심으로-)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.2
    • /
    • pp.83-96
    • /
    • 2000
  • Erosional basins formed in middle and upper reaches of Korean great rivers have been main life space of local small and middle cities, but previous studies on erosional basins are widely apart from residents' life and are in shortage with the endeavor to elucidate the man and environment relationship. This paper analyzes the factors and the modes of land-use changes of hills in the erosional basin. In this paper four erosional basins with different geological conditions are selected to elucidate the effect of geological factor(Geochang: granite, Chogye: metamorphic rock, Angye: gravelly sedimentary rock, Maseong: limestone). And the distribution of land use on the transverse and longitudinal cross-section map of the hill is described. The landscape of erosional basin is consisted of surrounding mountains, hills, dissected valleys, and incoming river's floodplain. Dissected valleys and incoming river's floodplain were reclaimed early as paddy field and hills have been used as woodland up to recently. Residents have a new appreciation of hills as a productive hill out of a traditional holy space[mountain] by influence of capitalistic thought that 'natural environment is a sort of productive resource'. Population increase is the another pressure of hill reclamation. The modes of landscape changes due to natural conditions are as follow: (1) In Geochang basin with dense tectolineament spacing, the gentle part of hill is used as field, orchard and agricultural-industrial complex site and the steep part is as woodland. (2) Hills in Angye basin with sparse tectolineament spacing are relatively flat because of maintaining a part of original denudational surface, and are used as orchids, field, paddy fields and agricultural-industrial complex site. The dissection valleys between hills are gentle concave and are used as paddy fields. (3) Hills in Maseong basin are wide and flat, and are used as fields, orchards, and agricultural-industrial complex site. (4) Because hills in Chogye basin, a closed type, are weared by affluents and are narrow and short. Hills are used as woodland and wide dissected valleys are reclaimed as paddy fields.

  • PDF