• Title/Summary/Keyword: 토양/대수층 처리 (SAT)

Search Result 5, Processing Time 0.016 seconds

Water Quality Changes in Wastewater Effluent from the Unsaturated and Saturated Soil Aquifer Treatment(SAT) Columns Simulating Shallow Aquifer (얕은 불포화 및 포화 대수층을 모사한 SAT 토양칼럼에서의 하수처리장 방류수 처리 수질 변화)

  • Cha Woo-Suk;Kim Jung-Woo;Choi Hee-Chul;Won Jong-Ho;Kim In-Soo;Cho Jae-Weon
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.18-24
    • /
    • 2005
  • Water quality changes of wastewater effluent in the shallow aquifier condition was investigated using laboratory unsaturated and saturated SAT columns for over five months. Average DOC removal was 31.9% in the unsaturated SAT column whereas no removal occurred in the saturated SAT column. Under the shallow aquifer condition, nitrification was not completed in the unsaturated SAT column, releasing residual ammonium nitrogen into the saturated SAT column. Short retention time (one day) in the shallow unsaturated SAT column rendered DO of about 2 mg/L to the influent of the saturated SAT column. Phosphate was not removed at all in the unsaturated SAT column while complete removal was achieved in the saturated column. Consequently, organic and inorganic compounds were removed under the shallow aquifer condition as effectively as was in deep aquifer, except for the release of ammonium and relatively high DO into the saturated SAT column.

Modeling Fate and Transport of Organic and Nitrogen Species in Soil Aquifer Treatment-(I) Model Development and Verification (토양/대수층 처리(soil aquifer treatment)에서 유기물과 질소화합물 제거와 이송 모델링-(I) 모델 개발 및 검증)

  • Kim Jung-Woo;Kim Jeong-Kon;Cha Woo-Suk;Choi Hee-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.9-15
    • /
    • 2005
  • Soil aquifer treatment is a water reuse technology that secondary or tertiary treated wastewater is infiltrated into the aquifer in which physical and biochemical reactions occur. Major consideration in SAT is the removal and transport of DOC and nitrogen species. In this study, reaction mechanism in SAT was examined considering nitrification, denitrification and organic oxidation. In addition, SAT modeling system was developed as the reaction mechanism was applied to groundwater flow and transport model. In verification of the reaction module by 1-dimensional unsaturated soil column test, the experimental data of all of the species, ammonium, nitrate, DOC and DO, were well matched with the simulation results. In sensitivity analysis, ammonium partition coefficient, dissolved oxygen inhibition constant and biomass decay rate affect ammonium, DOC and DO concentration of effluent, respectively.

Modeling Fate and Transport of Organic and Nitrogen Species in Soil Aquifer Treatment-(II) Simulations Based on the Field Conditions (토양/대수층 처리(Soil Aquifer Treatment)에서 유기물과 질소화합물 제거와 이송 모델링-(II) 현장조건의 변화에 따른 모델 결과)

  • Kim Jung-Woo;Kim Jeong-Kon;Lee Young-Joon;Choi Hee-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.13-17
    • /
    • 2005
  • For the SAT modeling system considering the reaction module which consists of nitrification, denitrification and organic oxidation, an imaginary cross-sectional 2-dimensional model simulation was carried out to analyze the sensitivity of the model. Four parameters, such as hydraulic conductivity, source water loading rate, ground surface pavement and operation schedule, were considered for the sensitivity analysis. Most factors considered in model development step were well reflected in the simulation results.

Application of soil aquifer treatment to secure clean and safe river water in urban watershed (토양/대수층 처리를 이용한 깨끗하고 안전한 도심하천 유지용수 확보 기술)

  • Kim, Jung-Woo;Cha, Sung-Min;Choi, Hee-Chul
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.409-411
    • /
    • 2008
  • Water conveyance from waste water treatment plant can play a role in securing river water quantitatively in urban watershed, but it can also cause more severe contamination of river water due to lack of water quality management. Soil aquifer treatment(SAT) has been introduced to overcome the worsening water quality in the water conveyance system considering the characteristics of Korean urban watershed. The application of SAT to the water conveyance system not only improve water quality of ordinarily discharged water but also prevent accidential water pollution to the urban watershed. Since most domestic urban watersheds are consist of narrow terrace lands and surrounded by roads, SAT is estimated not to be appropriate to the urban watershed with respect to the quantitative efficiency. However, since the upstream of urban watershed in which discharge ports are located usually consists of agricultural lands, SAT can be applied near discharge ports. Therefore, combination of water conveyance and SAT is expected to supply clean and safe river water in urban watershed.

  • PDF

제주도 지하수자원의 최적 개발가능량 선정에 관한 수리지질학적 연구

  • 한정상;김창길;김남종;한규상
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1994.07a
    • /
    • pp.184-215
    • /
    • 1994
  • The Hydrogeologic data of 455 water wells comprising geologic and aquifer test were analyzed to determine hydrogeoloic characteristics of Cheju island. The groundwater of Cheju island is occurred in unconsolidated pyroclastic deposits interbedded in highly jointed basaltic and andesic rocks as high level, basal and parabasal types order unconfined condition. The average transmissivity and specific yield of the aquifer are at about 29,300m$^2$/day and 0.12 respectively. The total storage of groundwater is estimated about 44 billion cubic meters(m$^3$). Average annual precipitation is about 3390 million m$^3$ among which average recharge amount is estimated 1494 million m$^3$ equivalent 44.1% of annual precipitation with 638 million m$^3$ of runoff and 1256 million m$^3$ of evapotranspiration. Based on groundwater budget analysis, the sustainable yield is about 620 million m$^3$(41% of annual recharge)and rest of it is discharging into the sea. The geologic logs of recently drilled thermal water wens indicate that very low-permeable marine sediments(Sehwa-ri formation) composed of loosely cemented sandy sat derived from mainly volcanic ashes, at the 1st stage volcanic activity of the area was situated at the 120$\pm$68m below sea level. And also the other low-permeable sedimentary rock called Segipo-formation which is deemed younger than former marine sediment is occured at the area covering north-west and western part of Cheju at the $\pm$70m below sea level. If these impermeable beds are distributed as a basal formation of fresh water zone of Cheju, most of groundwater in Cheju will be para-basal type. These formations will be one of the most important hydrogeologic boundary and groundwater occurences in the area.

  • PDF