Modeling Fate and Transport of Organic and Nitrogen Species in Soil Aquifer Treatment-(I) Model Development and Verification

토양/대수층 처리(soil aquifer treatment)에서 유기물과 질소화합물 제거와 이송 모델링-(I) 모델 개발 및 검증

  • Kim Jung-Woo (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kim Jeong-Kon (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Cha Woo-Suk (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Choi Hee-Chul (Center for Water Research, Gwangju Institute of Science and Technology)
  • 김정우 (광주과학기술원 환경공학과) ;
  • 김정곤 (한국수자원공사 수자원연구원) ;
  • 차우석 (광주과학기술원 환경공학과) ;
  • 최희철 (광주과학기술원 물 연구센터)
  • Published : 2005.06.01

Abstract

Soil aquifer treatment is a water reuse technology that secondary or tertiary treated wastewater is infiltrated into the aquifer in which physical and biochemical reactions occur. Major consideration in SAT is the removal and transport of DOC and nitrogen species. In this study, reaction mechanism in SAT was examined considering nitrification, denitrification and organic oxidation. In addition, SAT modeling system was developed as the reaction mechanism was applied to groundwater flow and transport model. In verification of the reaction module by 1-dimensional unsaturated soil column test, the experimental data of all of the species, ammonium, nitrate, DOC and DO, were well matched with the simulation results. In sensitivity analysis, ammonium partition coefficient, dissolved oxygen inhibition constant and biomass decay rate affect ammonium, DOC and DO concentration of effluent, respectively.

토양/대수층 처리(Soil Aquifer Treatment, SAT)는 하수처리장으로부터의 2차 또는 3차 처리수를 대수층으로 침투시켜, 토양 매질에서 일어나는 물리적/생화학적 반응에 의해 재처리하는 용수 재이용 기술이다. SAT에서의 주요 관심 대상은 유기물과 질소화합물의 제거와 이송에 있다. 본 연구에서는 암모늄의 질산화 반응, 질소산회물의 탈질 반응, 그리고 유기물의 산화반응을 고려하여 SAT에서 일어나는 반응 메커니즘을 규명하고 이를 지하수 흐름과 이송 모렐 에 접목시킴으로써 SAT 모델링 시스템을 구현하고자 하였다. 실험실 일차원 불포화 토양 컬럼 실험을 통한 모델 검증에서 암모늄, 질산성 질소, DOC, 용존산소 모두 일정한 농도 범위 안에서 일치하였다. 모델 변수에 대한 민감도 분석에서, 암모늄 분배계수는 유출부의 암모늄 농도에, 용존산소 저해상수는 유출부의 유기물 농도에, 그리고 미생물 감쇄계수는 유출부의 용존산소 농도에 영향을 주었다.

Keywords

References

  1. Essaid, H.I., Bekins, B.A., Godsy, E.M., Warren, E., Baedecker, M.J., and Cozzarelli, I.M., 1995, Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site, Water Resour. Res., 31(12), 3309-3327 https://doi.org/10.1029/95WR02567
  2. Fox, P., Narayanaswamy, K., Genz, A., and Drewes, J.E., 2001, Water quality transformation during Soil Aquifer Treatment at the Mesa Northwest Water Reclamation Plant, USA, Water Sci. Technol., 43(10), 343-350
  3. Hydrogeologic, Inc., 1996. MS-VMS software (version 1.2) documentation. Herndon, USA
  4. Kanarek, A. and Michail, M., 1996, Groundwater recharge with municipal effluent: Dan region reclamation project, Israel, Water Sci. Technol., 34(11), 227-233
  5. MacQuarrie, K.T.B. and Sudicky, E.A, 2001, Multicomponent simulation of wastewater-derived nitrogen and carbon in shallow unconfined aquifers I. Model formulation and performance, J. Contam. Hydrol., 47, 53-84 https://doi.org/10.1016/S0169-7722(00)00137-6
  6. National Center for Sustainable Water Supply (NCSWS), 2001, Investigation on Soil-Aquifer Treatment for sustainable water reuse, Arizona State University, Tempe, Arizona, U.S.A.. [Research Project Summary]
  7. Nema, P., Ojha, C.S.P., Kumar, A., and Khanna, P., 2001, Technoeconomic evaluation of soil-aquifer treatment using primary effluent at Ahmedabad, India, Water Res., 35(9), 2179-2190 https://doi.org/10.1016/S0043-1354(00)00493-0
  8. Tang, Z., Li, G, Mays, L.W., and Fox, P., 1996, Development of methodology for the optimal operation of Soil Aquifer Treatment systems, Water Sci. Technol., 33(10-11), 433-442 https://doi.org/10.1016/0273-1223(96)00446-5
  9. Van Genuchten, M.Th., 1980, A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892-898 https://doi.org/10.2136/sssaj1980.03615995004400050002x
  10. Van Riper, C. and Geselbracht, J., 1999, Water reclamation and reuse, Water Environ. Res., 71(5), 720-728 https://doi.org/10.2175/106143099X133749