• Title/Summary/Keyword: 텍스트 연구

Search Result 3,471, Processing Time 0.033 seconds

A Study on the Creation of Interactive Text Collage using Viewer Narratives (관람자 내러티브를 활용한 인터랙티브 텍스트 콜라주 창작 연구)

  • Lim, Sooyeon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.297-302
    • /
    • 2022
  • Contemporary viewers familiar with the digital space show their desire for self-expression and use voice, text and gestures as tools for expression. The purpose of this study is to create interactive art that expresses the narrative uttered by the viewer in the form of a collage using the viewer's figure, and reproduces and expands the story by the viewer's movement. The proposed interactive art visualizes audio and video information acquired from the viewer in a text collage, and uses gesture information and a natural user interface to easily and conveniently interact in real time and express personalized emotions. The three pieces of information obtained from the viewer are connected to each other to express the viewer's current temporary emotions. The rigid narrative of the text has some degree of freedom through the viewer's portrait images and gestures, and at the same time produces and expands the structure of the story close to reality. The artwork space created in this way is an experience space where the viewer's narrative is reflected, updated, and created in real time, and it is a reflection of oneself. It also induces active appreciation through the active intervention and action of the viewer.

Study on Difference of Wordvectors Analysis Induced by Text Preprocessing for Deep Learning (딥러닝을 위한 텍스트 전처리에 따른 단어벡터 분석의 차이 연구)

  • Ko, Kwang-Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.489-495
    • /
    • 2022
  • It makes difference to LSTM D/L(Deep Learning) results for language model construction as the corpus preprocess changes. An LSTM model was trained with a famouse literaure poems(Ki Hyung-do's work) for training corpus in the study. You get the two wordvector sets for two corpus sets of the original text and eraised word ending text each once D/L training completed. It's been inspected of the similarity/analogy operation results, the positions of the wordvectors in 2D plane and the generated texts by the language models for the two different corpus sets. The suggested words by the silmilarity/analogy operations are changed for the corpus sets but they are related well considering the corpus characteristics as a literature work. The positions of the wordvectors are different for each corpus sets but the words sustained the basic meanings and the generated texts are different for each corpus sets also but they have the taste of the original style. It's supposed that the D/L language model can be a useful tool to enjoy the literature in object and in diverse with the analysis results shown in the study.

A Text Network Analysis of North Korean Library Journal, 『Reference Materials for Librarian』 (북한 도서관잡지 『도서관일군 참고자료』의 텍스트 네트워크 분석)

  • Lee, Seongsin;Kim, Hyunsook;Baek, Sumin;Yoon, Subin;Choi, Jae-Hwang
    • Journal of Korean Library and Information Science Society
    • /
    • v.53 no.3
    • /
    • pp.169-191
    • /
    • 2022
  • The purpose of this study is to attempt a text network analysis for two years of 『Reference Materials for Librarian』 (2016-2017) published by the Library Operation Methodology Research Institute in North Korea. A text network analysis can measure how important a particular word by grasping the connectivity and relationship between words beyond a simple word frequency analysis, and it is also possible to interpret specific social phenomena and derive implications. Frequency, degree centrality, the betweenness centrality, community analysis of the collected words were calculated using NetMiner. As a result, the terms 'users', 'information services', 'information needs', 'information technology', 'social learning', 'computers', 'databases', 'information acquisition', 'information retrieval' and 'librarian' were appeared as important ones in understanding North Korean libraries.

Analysis on Peritext of the Picture-book 『The Legend of Pat-bing-su』 (그림책 『팥빙수의 전설』 페리텍스트의 서사적 의미 분석)

  • A Reum Nam;Sang Lim Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.185-193
    • /
    • 2023
  • The purpose of the study was to analyze the narrative meaning of the peritext in the picture-book of 『The Legend of Pat-bing-su』. For the purpose, based on the narrative components proposed by Nam and Kim, the narrative meanings of the peritext were analyzed. As the results, the peritexts of 『The Legend of Red Pat-bing-su』 include basic information of the title, author's name, and publication information, and physical elements of hard cover binding with matte rectangular paper that matches the narrative, which support prior understanding of the narratives. In addition, the peritext components such as covers, endpapers, title page, and copyright page lead readers to predict or expand narratives components to predict, expand, or transform the narrative, and provide additional information for understanding plots or genres.

Feature selection for text data via sparse principal component analysis (희소주성분분석을 이용한 텍스트데이터의 단어선택)

  • Won Son
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.6
    • /
    • pp.501-514
    • /
    • 2023
  • When analyzing high dimensional data such as text data, if we input all the variables as explanatory variables, statistical learning procedures may suffer from over-fitting problems. Furthermore, computational efficiency can deteriorate with a large number of variables. Dimensionality reduction techniques such as feature selection or feature extraction are useful for dealing with these problems. The sparse principal component analysis (SPCA) is one of the regularized least squares methods which employs an elastic net-type objective function. The SPCA can be used to remove insignificant principal components and identify important variables from noisy observations. In this study, we propose a dimension reduction procedure for text data based on the SPCA. Applying the proposed procedure to real data, we find that the reduced feature set maintains sufficient information in text data while the size of the feature set is reduced by removing redundant variables. As a result, the proposed procedure can improve classification accuracy and computational efficiency, especially for some classifiers such as the k-nearest neighbors algorithm.

A Study on the Effect of Using Sentiment Lexicon in Opinion Classification (오피니언 분류의 감성사전 활용효과에 대한 연구)

  • Kim, Seungwoo;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.133-148
    • /
    • 2014
  • Recently, with the advent of various information channels, the number of has continued to grow. The main cause of this phenomenon can be found in the significant increase of unstructured data, as the use of smart devices enables users to create data in the form of text, audio, images, and video. In various types of unstructured data, the user's opinion and a variety of information is clearly expressed in text data such as news, reports, papers, and various articles. Thus, active attempts have been made to create new value by analyzing these texts. The representative techniques used in text analysis are text mining and opinion mining. These share certain important characteristics; for example, they not only use text documents as input data, but also use many natural language processing techniques such as filtering and parsing. Therefore, opinion mining is usually recognized as a sub-concept of text mining, or, in many cases, the two terms are used interchangeably in the literature. Suppose that the purpose of a certain classification analysis is to predict a positive or negative opinion contained in some documents. If we focus on the classification process, the analysis can be regarded as a traditional text mining case. However, if we observe that the target of the analysis is a positive or negative opinion, the analysis can be regarded as a typical example of opinion mining. In other words, two methods (i.e., text mining and opinion mining) are available for opinion classification. Thus, in order to distinguish between the two, a precise definition of each method is needed. In this paper, we found that it is very difficult to distinguish between the two methods clearly with respect to the purpose of analysis and the type of results. We conclude that the most definitive criterion to distinguish text mining from opinion mining is whether an analysis utilizes any kind of sentiment lexicon. We first established two prediction models, one based on opinion mining and the other on text mining. Next, we compared the main processes used by the two prediction models. Finally, we compared their prediction accuracy. We then analyzed 2,000 movie reviews. The results revealed that the prediction model based on opinion mining showed higher average prediction accuracy compared to the text mining model. Moreover, in the lift chart generated by the opinion mining based model, the prediction accuracy for the documents with strong certainty was higher than that for the documents with weak certainty. Most of all, opinion mining has a meaningful advantage in that it can reduce learning time dramatically, because a sentiment lexicon generated once can be reused in a similar application domain. Additionally, the classification results can be clearly explained by using a sentiment lexicon. This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of movie reviews. Additionally, various parameters in the parsing and filtering steps of the text mining may have affected the accuracy of the prediction models. However, this research contributes a performance and comparison of text mining analysis and opinion mining analysis for opinion classification. In future research, a more precise evaluation of the two methods should be made through intensive experiments.

A Study on Text Pattern Analysis Applying Discrete Fourier Transform - Focusing on Sentence Plagiarism Detection - (이산 푸리에 변환을 적용한 텍스트 패턴 분석에 관한 연구 - 표절 문장 탐색 중심으로 -)

  • Lee, Jung-Song;Park, Soon-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.43-52
    • /
    • 2017
  • Pattern Analysis is One of the Most Important Techniques in the Signal and Image Processing and Text Mining Fields. Discrete Fourier Transform (DFT) is Generally Used to Analyzing the Pattern of Signals and Images. We thought DFT could also be used on the Analysis of Text Patterns. In this Paper, DFT is Firstly Adapted in the World to the Sentence Plagiarism Detection Which Detects if Text Patterns of a Document Exist in Other Documents. We Signalize the Texts Converting Texts to ASCII Codes and Apply the Cross-Correlation Method to Detect the Simple Text Plagiarisms such as Cut-and-paste, term Relocations and etc. WordNet is using to find Similarities to Detect the Plagiarism that uses Synonyms, Translations, Summarizations and etc. The Data set, 2013 Corpus, Provided by PAN Which is the One of Well-known Workshops for Text Plagiarism is used in our Experiments. Our Method are Fourth Ranked Among the Eleven most Outstanding Plagiarism Detection Methods.

Text Structuring using Centering Theory (중심화 이론을 이용한 텍스트 구조화)

  • Roh, Ji-Eun;Na, Seung-Hoon;Lee, Jong-Hyeok
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.572-583
    • /
    • 2007
  • This paper investigates Centering-based metrics to evaluate ordering of utterances for text structuring. We point out a problem of MIN.NOCB metric which has been regarded as the simplest and best measure to evaluate coherence of ordering within Centering framework, and propose a new Centering-based metric, MAX.CPS as an alternative or supplementary one. This paper introduces a framework which pre-estimates the effectiveness of a metric on a given input ordering, and selects an applicable metric according to the pre-estimation result. Using this framework, we propose a new policy which can generate more optimal ordering within Centering framework. Moreover, we evaluate several kinds of Cf-ranking methods in terms of Centering-based metrics, and find that simply ranking entities by their linear order is generally the most suitable because of characteristics in Korean.

Text Detection and Recognition in Outdoor Korean Signboards for Mobile System Applications (모바일 시스템 응용을 위한 실외 한국어 간판 영상에서 텍스트 검출 및 인식)

  • Park, J.H.;Lee, G.S.;Kim, S.H.;Lee, M.H.;Toan, N.D.
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.44-51
    • /
    • 2009
  • Text understand in natural images has become an active research field in the past few decades. In this paper, we present an automatic recognition system in Korean signboards with a complex background. The proposed algorithm includes detection, binarization and extraction of text for the recognition of shop names. First, we utilize an elaborate detection algorithm to detect possible text region based on edge histogram of vertical and horizontal direction. And detected text region is segmented by clustering method. Second, the text is divided into individual characters based on connected components whose center of mass lie below the center line, which are recognized by using a minimum distance classifier. A shape-based statistical feature is adopted, which is adequate for Korean character recognition. The system has been implemented in a mobile phone and is demonstrated to show acceptable performance.

Design of Handwriting-based Text Interface for Support of Mobile Platform Education Contents (모바일 플랫폼 교육 콘텐츠 지원을 위한 손 글씨 기반 텍스트 인터페이스 설계)

  • Cho, Yunsik;Cho, Sae-Hong;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.5
    • /
    • pp.81-89
    • /
    • 2021
  • This study proposes a text interface for support of language-based educational contents in a mobile platform environment. The proposed interface utilizes deep learning as an input structure to write words through handwriting. Based on GUI (Graphical User Interface) using buttons and menus of mobile platform contents and input methods such as screen touch, click, and drag, we design a text interface that can directly input and process handwriting from the user. It uses the EMNIST (Extended Modified National Institute of Standards and Technology database) dataset and a trained CNN (Convolutional Neural Network) to classify and combine alphabetic texts to complete words. Finally, we conduct experiments to analyze the learning support effect of the interface proposed by directly producing English word education contents and to compare satisfaction. We compared the ability to learn English words presented by users who have experienced the existing keypad-type interface and the proposed handwriting-based text interface in the same educational environment, and we analyzed the overall satisfaction in the process of writing words by manipulating the interface.