KIPS Transactions on Computer and Communication Systems
/
v.11
no.1
/
pp.23-34
/
2022
With the development of network technology, the application area has also been diversified, and protocols for various purposes have been developed and the amount of traffic has exploded. Therefore, it is difficult for the network administrator to meet the stability and security standards of the network with the existing traditional switching and routing methods. Software Defined Networking (SDN) is a new networking paradigm proposed to solve this problem. SDN enables efficient network management by programming network operations. This has the advantage that network administrators can flexibly respond to various types of attacks. In this paper, we design a threat level management module, an attack detection module, a packet statistics module, and a flow rule generator that collects attack information through the controller and switch, which are components of SDN, and detects attacks based on these attributes of SDN. It proposes a method to block denial of service attacks (DoS) of advanced attackers by programming and applying honeypot. In the proposed system, the attack packet can be quickly delivered to the honeypot according to the modifiable flow rule, and the honeypot that received the attack packets analyzed the intelligent attack pattern based on this. According to the analysis results, the attack detection module and the threat level management module are adjusted to respond to intelligent attacks. The performance and feasibility of the proposed system was shown by actually implementing the proposed system, performing intelligent attacks with various attack patterns and attack levels, and checking the attack detection rate compared to the existing system.
The active database system introduces the active rules detecting specified state. As the condition evaluation of the active rules is performed every time an event occurs, the performance of the system has a great influence, depending on the conditions processing method. In this paper, we propose the conditions processing system with the preprocessor which determines the delta tree structure, constructs the classification tree, and generates the aggregate function table. Due to the characteristics of the active database through which the active rules can be comprehended beforehand, the preprocessor can be introduced. In this paper, the delta tree which can effectively process the join, selection operations, and the aggregate function is suggested, and it can enhance the condition evaluation performance. And we propose the classification tree which effectively processes the join operation and the aggregate function table processing the aggregate function which demands high cost. In this paper, the conditions processing system can be expected to enhance the performance of conditions processing in the active rules as the number of conditions comparison decreases because of the structure which is made in the preprocessor.
Kim Kyu-Ho;Kang Seok-Min;Song Il-Seop;Kwon Teack-Geun
The Journal of Korean Institute of Communications and Information Sciences
/
v.31
no.2B
/
pp.91-97
/
2006
As increasing the network bandwidth, the threat of a network also increases with emerging various new services. For a high-performance network security, It is generally used that high-speed packet classification methods which employ hardware like TCAM. There needs an method using these devices efficiently because they are expensive and their capacity is not sufficient. In this paper, we propose an efficient packet classification using a Ternary-CAM(TCAM) which is widely used device for high-speed packet classification in which we have applied Snort rule set for the well-known intrusion detection system. In order to save the size of an expensive TCAM, we have eliminated duplicated IP addresses and port numbers in the rule according to the partitioning of a table in the TCAM, and we have represented negation and range rules with reduced TCAM size. We also keep advantages of low TCAM capacity consumption and reduce the number of TCAM lookups by decreasing the TCAM partitioning using combining port numbers. According to simulation results on our TCAM partitioning, the size of a TCAM can be reduced by upto 98$\%$ and the performance does not degrade significantly for high-speed packet classification with a large amount of rules.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.10
no.1
/
pp.38-45
/
2017
Attacking of computer and network is increasing as information processing technology heavily depends on computer and network. To prevent the attack of system and network, host and network based intrusion detection system has developed. But previous rule based system has a lot of difficulties. For this reason demand for developing a intrusion detection system which detects and cope with the attack of system and network resource in real time. In this paper we develop a real time intrusion detection system which is combination of APEX and LS-SVM classifier. Proposed system is for nonlinear data and guarantees convergence. While real time processing system has its advantages, such as memory efficiency and allowing a new training data, it also has its disadvantages of inaccuracy compared to batch way. Therefore proposed real time intrusion detection system shows similar performance in accuracy compared to batch way intrusion detection system, it can be deployed on a commercial scale.
Recently, ubiquitous sensor network (USN) has been applied to many areas including environment monitoring. A few studies applied the USN to disaster prevention and emergency management, in particular, aiming to conserve cultural heritage. USN is an useful technology to do online real-time monitoring for the purpose of early detection of the fire which is a critical cause of damage and destruction of cultural heritages. It is necessary to online monitor the cultural heritages that human has a difficulty to access or their external appearance and beauty are important, by using the USN. However, there exists false warning from USN-based monitoring systems without human intervention. In this paper, we presented an alternative to resolve the problem by applying ontology. Our intelligent fire early detection systems for conserving cultural heritages are based on ontology and inference rules, and tested under laboratory environments.
Journal of the Korea Institute of Information Security & Cryptology
/
v.10
no.4
/
pp.59-71
/
2000
Due to the advance of computer and communication technology, intrusions or crimes using a computer have been increased rapidly while various information has been provided to users conveniently. As a results, many studies are necessary to detect the activities of intruders effectively. In this paper, a new association algorithm for the anomaly detection model is proposed in the process of generating user\`s normal patterns. It is that more recently observed behavior get more affection on the process of data mining. In addition, by clustering generated normal patterns for each use or a group of similar users, it is possible to identify the usual frequency of programs or command usage for each user or a group of uses. The performance of the proposed anomaly detection system has been tested on various system Parameters in order to identify their practical ranges for maximizing its detection rate.
Journal of the Korea Institute of Information Security & Cryptology
/
v.22
no.2
/
pp.225-238
/
2012
Among the various security threats in online games, the use of game bots is the most serious problem. In this paper, we propose a framework for user behavior analysis for bot detection in online games. Specifically, we focus on party play that reflects the social activities of gamers: In a Massively Multi-user Online Role Playing Game (MMORPG), party play log includes a distinguished information that can classify game users under normal-user and abnormal-user. That is because the bot users' main activities target on the acquisition of cyber assets. Through a statistical analysis of user behaviors in game activity logs, we establish the threshold levels of the activities that allow us to identify game bots. Also, we build a knowledge base of detection rules based on this statistical analysis. We apply these rule reasoner to the sixth most popular online game in the world. As a result, we can detect game bot users with a high accuracy rate of 95.92%.
Journal of the Korea Institute of Information Security & Cryptology
/
v.33
no.3
/
pp.459-469
/
2023
The number of IoT devices is explosively increasing due to the development of embedded equipment and computer networks. As a result, cyber threats to IoT are increasing, and currently, malicious codes are being distributed and infected to IoT devices and exploited for DDoS. Currently, IoT devices that are the target of such an attack have various installation environments and have limited resources. In addition, IoT devices have a characteristic that once set up, the owner does not care about management. Because of this, IoT devices are becoming a blind spot for management that is easily infected with malicious codes. Because of these difficulties, the threat of malicious codes always exists in IoT devices, and when they are infected, responses are not properly made. In this paper, we will design an malware detection system for IoT in consideration of the characteristics of the IoT environment and present detection rules suitable for use in the system. Using this system, it will be possible to construct an IoT malware detection system inexpensively and efficiently without changing the structure of IoT devices that are already installed and exposed to cyber threats.
Artificial Intelligence is establishing itself as a familiar tool from an intractable concept. In this trend, financial sector is also looking to improve the problem of existing system which includes Fraud Detection System (FDS). It is being difficult to detect sophisticated cyber financial fraud using original rule-based FDS. This is because diversification of payment environment and increasing number of electronic financial transactions has been emerged. In order to overcome present FDS, this paper suggests 3 types of artificial intelligence models, Generative Adversarial Network (GAN), Deep Neural Network (DNN), and Convolutional Neural Network (CNN). GAN proves how data imbalance problem can be developed while DNN and CNN show how abnormal financial trading patterns can be precisely detected. In conclusion, among the experiments on this paper, WGAN has the highest improvement effects on data imbalance problem. DNN model reflects more effects on fraud classification comparatively.
Journal of the Korea Institute of Military Science and Technology
/
v.14
no.1
/
pp.123-131
/
2011
In this paper, modeling and design of a distributed detection system are considered for an active sonar sensor network. The sensor network has a parallel configuration and it consists of a fusion center and a set of receiver nodes. A system with two receiver nodes is considered to investigate a theoretical aspect of design. To be specific, AND rule and OR rule are considered as the fusion rules of the sensor network. For the fusion rules, it is shown that a threshold rule of each sensor node has uniformly most powerful properties. Optimum threshold for each sensor is obtained that maximizes the probability of detection given probability of false alarm. Numerical experiments were also performed to investigate the detection characteristics of a distributed detection system with multiple sensor nodes. The experimental results show how signal strength, false alarm probability, and the distance between nodes in a sensor field affect the system detection performances.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.