• Title/Summary/Keyword: 탄소 함량

Search Result 1,085, Processing Time 0.032 seconds

High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate (고출력 전자 패키지 기판용 고열전도 h-BN/PVA 복합필름)

  • Lee, Seong Tae;Kim, Chi Heon;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.95-99
    • /
    • 2018
  • High thermal conductivity films with electrically insulating properties have a great potential for the effective heat transfer as substrate and thermal interface materials in high density and high power electronic packages. There have been lots of studies to achieve high thermal conductivity composites using high thermal conductivity fillers such alumina, aluminum nitride, boron nitride, CNT and graphene, recently. Among them, hexagonal-boron nitride (h-BN) nano-sheet is a promising candidate for high thermal conductivity with electrically insulating filler material. This work presents an enhanced heat transfer properties of ceramic/polymer composite films using h-BN nano-sheets and PVA polymer resins. The h-BN nano-sheets were prepared by a mechanical exfoliation of h-BN flakes using organic media and subsequent ultrasonic treatment. High thermal conductivities over $2.8W/m{\cdot}K$ for transverse and $10W/m{\cdot}K$ for in-plane direction of the cast films were achieved for casted h-BN/PVA composite films. Further improvement of thermal conductivity up to $13.5W/m{\cdot}K$ at in-plane mode was achieved by applying uniaxial compression at the temperature above glass transition of PVA to enhance the alignment of the h-BN nano-sheets.

Flame Retardant and Thermal Properties of Wood-based Composite Boards Prepared by Graphene Nanoplatelet/Reused Phenolic Foam (그래핀나노플레이트렛 및 재활용 페놀폼으로 제조된 목재기반 복합보드의 난연 및 열적 특성)

  • Han, Jeong-In;Kim, Min-Ji;Song, Eun Ji;Kim, Kyung Hoon;In, Se-Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.371-378
    • /
    • 2019
  • Graphene nanoplatelet (GnP)/reused phenolic foam (re-PF)/wood composite boards were fabricated with different GnP content as 5, 10 and 20 w/w% to investigate the effect of GnP on thermal- and flame retardant properties of wood-based composite boards. The thermal- and flame retardant properties of fabricated composite boards were investigated by thermogravimetric analysis (TGA) and limiting oxygen index (LOI), respectively. The thermal stability of the composite boards increased proportionally with respect to the amount of GnP, and the char yield of these boards increased up to 22% compared to that of the pure wood board. The LOI values of composite boards were about 4.8~7.8% higher than those of using pure wood boards. It was also confirmed that the flame retardant properties of composite boards were remarkably improved by the addition of re-PF and GnP. These results were because of the fact that the re-PF and GnP with a high thermal stability delayed the initial thermal degradation temperature of composite boards and made their char layers denser and thicker which led the overall combustion delay effect of the composite board. Especially, GnP as a carbon-based material, facilitated the char layer formation and increased remarkedly the char yield, which showed higher effect on flame retardant properties than those of the re-PF.

Oxy Combustion Characteristics of Anthracite in a 100 kWth Circulating Fluidized Bed System (100 kWth 급 순환유동층 시스템에서 무연탄 순산소연소 특성 연구)

  • Moon, Ji-Hong;Jo, Sung-Ho;Mun, Tae-Young;Park, Sung-Jin;Kim, Jae-Young;Nguyen, Hoang Khoi;Lee, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.400-407
    • /
    • 2019
  • Oxy-combustion with a circulating fluidized bed (Oxy-CFBC) technology has been paid attention to cope with the climate change and fuel supply problem. In addition, Oxy-CFBC technology as one of the methods for carbon dioxide capture is an eco-friendly that can reduce air pollutants, such as $SO_2$, NO and CO through a flue gas recirculation process. The newly developed $100kW_{th}$ pilot-scale Oxy-CFBC system used for this research has been continuously utilizing to investigate oxy-combustion characteristics for various fuels, coals and biomasses to verify the possibility of fuel diversification. The anthracite is known as a low reactivity fuel due to a lot of fixed carbon and ash. Therefore, this study aims not only to improve combustion efficiency of an anthracite, but also to capture carbon dioxide. As a result, compared to air-combustion of sub-bituminous coal, oxy-combustion of anthracite could improve 2% combustion efficiency and emissions of $SO_2$, CO and NO were reduced 15%, 60% and 99%, respectively. In addition, stable operating of Oxy-CFBC could capture above 94 vol.% $CO_2$.

Analysis of estimated and actual reductions through registered LFG CDM projects in developing countries (개발도상국 매립가스 CDM 등록사업의 예상실적과 감축실적 분석)

  • Ryu, Seungmin;Pak, Daewon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.2
    • /
    • pp.5-14
    • /
    • 2021
  • As the implementation of carbon reduction measures would be monitored starting from 2023 in line with the Paris Agreement, it is crucial and urgent to control GHGs emitted from wastes contributing to 11% of methane emissions. Despite such importance and urgency, 93% of wastes are deposited in unsanitary landfills in developing countries, presenting challenges to methane management. Against the backdrop, landfill gas-to-energy projects have once again drawn attention for their economic substantiality secured through CDM projects while there has been much research actively carried out to estimate methane emissions and GHG reductions in landfills located in developing countries. Although a signifiant difference was found between estimations calculated based on research methodologies and actual results monitored through registered CDM projects, there has not been a study conducted on what is causing such a difference. Accordingly, the research team conducted an analysis of 18 LFG projects out of 46 that were registered as LFG CDM projects under the UNFCCC and has identified precipitation(28%), malfunction(22%), organic content(11%), amount of landfilled waste(11%) and temperature(11%) as key parameters causing the difference between the amount of methane captured and the amount of GHG reduced.

Study on Microstructure and Electrical Properties of Cement Mortar Containing Conductive Fibers (전도성 섬유가 함유된 시멘트 모르타르의 미세구조 및 전기적 특성 연구)

  • Park, Jong-Gun;Seo, Dong-Ju;Lim, Doo-Yeol;Lee, Yu-Jae;Heo, Gwang-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.72-83
    • /
    • 2022
  • This paper studied the effect on the microstructure, electrical properties, and compressive strength of cement mortar containing carbon fiber (CF) and steel fiber (SF), which are conductive materials. The resistivity of conductive fiber-reinforced cement mortar (FRCM) was measured using the 4-probe method, and the compressive strength was measured based on the compression test. Their performance was compared and reviewed with plain mortar (PM). Furthermore, the surface shape and composition of the fracture surface of the conductive FRCM were analyzed using a scanning electron microscope (SEM) and an energy disperse X-ray spectrometer (EDS). The results showed that the resistivity gradually increased as the curing time increased in all specimens, whereas the resistivity decreased significantly as the fiber volume fraction increased. Adding steel fibers up to 1.25% did not affect the resistivity of cement mortar considerably. On the contrast, the resistivity of carbon fiber was somewhat decreased even at low contents (ie, 0.1 to 0.3%), and thereafter, it was significantly decreased. The percolation threshold of the conductive CFRCM containing CF used in this experiment was 0.4%, and it is judged to be the optimum carbon fiber dosage to maximize the conductive effect while maintaining the compressive strength performance as much as possible. For the surface shape and composition analysis of conductive FRCM, the fracture surface was observed through SEM-EDS. These results are considered to be very useful in establishing the microstructure mechanism of reinforcing fibers in cement mortars.

Folate: 2020 Dietary reference intakes and nutritional status of Koreans (엽산: 2020 영양소 섭취기준과 한국인의 영양상태)

  • Han, Young-Hee;Hyun, Taisun
    • Journal of Nutrition and Health
    • /
    • v.55 no.3
    • /
    • pp.330-347
    • /
    • 2022
  • Folate, a water-soluble vitamin, acts as a coenzyme for one-carbon metabolism in nucleic acid synthesis and amino acid metabolism. Adequate folate nutritional status during the periconceptional period is known to prevent neural tube defects. In addition, insufficient folate intake is associated with various conditions, such as anemia, hyperhomocysteinemia, cardiovascular disease, cancer, cognitive impairment, and depression. This review discusses the rationale for the revision of the 2020 Korean dietary reference intakes for folate, and suggestions for future revisions. Based on the changes in the standard body weight in 2020, the adequate intake (AI) for infants (5-11 months) and the estimated average requirements (EARs) for 15-18 years of age were revised, but there were no changes in the recommended nutrient intakes (RNIs) and tolerable upper intake levels (ULs) for all age groups. Mean folate intake did not reach RNI in most age groups and was particularly low in women aged 15-29 years, according to the results of the 2016-2018 Korea National Health and Nutrition Examination Survey (KNHANES). The percentages of folate intake to RNI were lower than 60% in pregnant and lactating women, but serum folate concentrations were higher than those in other age groups, presumably due to the use of supplements. Therefore, total folate intake, from both food and supplements, should be evaluated. In addition, the database of folate in raw, cooked, and fortified foods should be further expanded to accurately assess the folate intake of Koreans. Determination of the concentrations of erythrocyte folate and plasma homocysteine as well as serum folate is recommended, and quality control of the analysis is critical.

Hydrochar Production from Kenaf via Hydrothermal Carbonization: Effect of Process Conditions on Hydrochar Characterization (열수탄화를 통해 kenaf로부터 hydrochar생산과 공정 조건에 따른 hydrochar 특성에 끼치는 영향)

  • Youn, Hee Sun;Um, Byung Hwan
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • The lignite and bituminous coal are mainly used in thermal power plant. They exhaust green house gas (GHG) such as CO2, and become deplete, thus require alternative energy resources. To solve the problem, the hydrochar production from biomass is suggested. In this study, both hydrothermal carbonization (HTC) and solvothermal carbonization (STC) were used to produce high quality hydrochar. To improve the reactivity of water solvent process in HTC, STC process was conducted using ethanol solution. The experiments were carried out by varying the solid-liquid ratio (1:4, 1:8, 1:12), reaction temperature (150~300 ℃) and retention time (15~120 min) using kenaf. The characteristic of hydrochar was analyzed by EA, FT-IR, TGA and SEM. The carbon content of hydrochar increased up to 48.11%, while the volatile matter decreased up to 39.34%. Additionally, the fuel characteristic of hydrochar was enhanced by reaction temperature. The results showed that the kenaf converted to a fuel by HTC and STC process, which can be used as an alternative energy source of coal.

A Study on the Method of Manufacturing Lactic Acid from Seaweed Biomass (해조류 바이오매스로부터 Lactic acid를 제조하는 방법에 관한 연구)

  • Lee, Hakrae;Ko, Euisuk;Shim, Woncheol;Kim, Jongseo;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • With the spread of COVID-19 worldwide, non-face-to-face services have grown rapidly, but at the same time, the problem of plastic waste is getting worse. Accordingly, eco-friendly policies such as carbon neutrality and sustainable circular economy are being promoted worldwide. Due to the high demand for eco-friendly products, the packaging industry is trying to develop eco-friendly packaging materials using PLA and PBAT and create new business models. On the other hand, Ulva australis occurs in large quantities in the southern seas of Korea and off the coast of Jeju Island, causing marine environmental problems. In this study, lactic acid was produced through dilute acid pretreatment, enzymatic saccharification, and fermentation processes to utilize Ulva australis as a new alternative energy raw material. In general, seaweeds vary in carbohydrate content and sugar composition depending on the species, harvest location, and time. Seaweed is mainly composed of polysaccharides such as cellulose, alginate, mannan, and xylan, but does not contain lignin. It is difficult to expect high extraction yield of the complex polysaccharide constituting Ulva australis with only one process. However, the fusion process of dilute acid and enzymatic saccharification presented in this study can extract most of the sugars contained in Ulva australis. Therefore, the fusion process is considered to be able to expect high lactic acid production yield when a commercial-scale production process is established.

Effect of Soil Microbial Diversity in Paddy Wetland under Organic Rice-Fish Mixed Farming System (유기농 복합생태 논습지의 토양 미생물 다양성 증진 효과)

  • Han, Yangsoo;Park, Choongbae;Cho, Jung-Lai;Park, Sang-Gu;Kong, Min-Jae;Nam, Hong-Shik;Son, Jinkwan
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.69-82
    • /
    • 2022
  • In this study, we investigated the bacterial community structure in organic rice-fish mixed farming paddy soil by using high-throughput sequencing technology. The results showed that compared with the organic rice cultivated soil, the content of AP (available phosphorus) increased by 310.23 % and the content of OM (organic matter) increased by 168.83%. The most abundant phyla in paddy soils were Proteobacteria, Bacteriodetes, and Chloroflexi, whose relative abundance was above 47.83%. Among the dominant genera, the relative abundance of Limisphaera in paddy soils was observed. Alpha diversity indicated that the bacterial diversity of paddy soils was similar among each other. The bacterial community structure was affected by the relative abundance of bacteria, not the species of bacteria. Principal Coordinated Analysis (PCoA) results showed that the bacterial communities in organic rice-fish mixed farming soil and organic paddy soil were correlated to each other; the bacterial community structure was distinctively grouped by four different systems (paddy soil under organic rice-fish mixed farming system, organic rice cultivation, and conventional rice cultivation), where the first two are closely related to each other than the third one. The results provide basal support for organic agri-cultivation while improving an ecological value at the same time.

Soil Health Assessment of Soil Washing and Landfarming Treated Soils (토양세척 및 토양경작 정화 토양의 건강성 평가)

  • Yong min Yi;Kijune Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.2
    • /
    • pp.112-122
    • /
    • 2023
  • To restore the ecological function of contaminated soil and maximize the ecological services provided by the soil, besides the toxicity orrisk caused by pollutants, the functional aspects of the soil ecosystem should be considered. In this study, a method for evaluating the health of cleaned soil was presented, and the applicability of the proposed evaluation method was examined by applying it to soil treated with washing and landfarming. Productivity, habitat, water retention capacity, nutrient cycling, carbon retention capacity, and buffering capacity were used as soil health evaluation indicators. The results showed that the soil health was not completely recovered after remediation, and even in the case of the washed soil, the health was lower than before remediation. On the other hand, there was no significant change in soil quality due to oil pollution, but soil health deteriorated. Unlike the slightly improved soil quality after landfarming treatment, soil health was not completely restored. Therefore, the results of this study indicate that it is desirable to consider both soil quality and health when evaluating the remediation effect. The soil health evaluation method proposed in this study can be usefully utilized for the sustainable use of cleaned soil and to promote ecosystem services.