• Title/Summary/Keyword: 콘크리트 파괴 강도

Search Result 902, Processing Time 0.021 seconds

Evaluation of the Shear Strength of Reinforced Concrete Beams Strengthened with Continuous fiber Reinforced Polymer (연속섬유에 의하여 보강된 철근콘크리트 보의 전단강도 평가)

  • Lee Jung-Yoon;Hyang Hyun-Bok;Kim Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.983-992
    • /
    • 2005
  • The shear failure modes of fiber reinforced polymer(FRP) strengthened concrete beams are quite different to those of the beams strengthened with steel stirrups. When the beams are strengthened with larger amount of FRP composites, the beams normally fail in shear due to concrete crushing before the FRP reaches its rupture strain. In order to predict the shear strength of such beams, the actual rupture strain must be known. The equations previously reported in the technical literature adopt an effective reduction factor for the rupture strain. These equations may not be applicable to FRP strengthened RC beams that are beyond the experimental application limits, because most of these equations are empirical in nature. This paper presents the results of an analytical study on the performance of reinforced concrete beams externally wrapped with FRP composites and internally reinforced with conventional steel stirrups.

Strength and Deformation Characteristics of Steel Fiber Reinforced Columns (강섬유 보강 기둥의 강도 및 변형 특성)

  • 장극관;이현호;양승호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • As composite materials, the addition of steel fiber with concrete significant)y improves the engineering properties of structural members, notably shear strength and ductility. Flexural strength, fatigue strength, and the capacity to resist cracking are also enhanced. Especially the strengthening effect of steel fiber in shear is to prevent the brittle shear failure. In this study, shear-strengthening effect of steel fiber in RC short columns were investigated from the literature surveys and 10th specimem's member test results. From the test results, following conclusions can be made; the maximum enhancement of shear-strengthening effect can be achieved at about 1.5 % of steel fiber contents, shear strength and ductility capacity were improved remarkably in comparison to stiffness and energy dissipation capacity in steel fiber reinforced concrete.

An Experimental Study on Shear Strength of Set Anchors Installed in Plain Concrete (무근콘크리트에 매입된 셋트앵커의 전단내력평가에 관한 실험적 연구)

  • Seo, Seong Yeon;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.271-283
    • /
    • 2005
  • This paper concerns the prediction of shear capacity, as governed by steel failure and concrete breakout failure, of set anchors installed in plain concrete. For this purpose, the methods to evaluate the shear capacity of the set anchors in concrete are summarized and the experimental data are compared with capacities by the two present methods : the method of ACI349-90 and the Concrete Capacity Design (CCD) method. (1) The constant-0.684 in the steel strength equation of set anchor was determined from shear test data at the 5 percent fractile probability. Consequently, it was concluded that the constant-0.6 and 0.5 in the steel strength equation for steel failure of ACI318-02 and EOTA were safe. The nominal shear strength of set anchor was proposed as following. $V_s=0.684 A_{se}f_{ut}$. (2) The CCD method was considered reasonable in estimating the concrete breakout strength of set anchors. In terms of the CCD method, the nominal concrete breakout strength of set anchor in shear was provided as follows; $V_b=0.609(\frac{\iota}{d_o})^{0.2}\sqrt{d_0}\sqrt{f_c}(c_1)^{1.5}$(N). (3) The CCD method was considered reasonable in estimating the concrete breakout strength for spacing of set anchors. The proposed equation was considered safe in estimating the concrete breakout strength for spacing of set anchors.

Punching Shear Strength of Prestressed Precast Concrete Deck (프리스트레스를 도입한 프리캐스트 콘크리트 교량바닥판의 펀칭전단강도)

  • 정철헌;류형근;정운용;김인규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.653-659
    • /
    • 2002
  • Recently, the failure case of the bridge deck slabs have been increasing in Korea and it was observed that the failure modes of most deck slabs collapsed were not caused by flexural moment but by local punching shear. The main reason of the failures was the punching shear failure of deck slabs under heavy truck traffics. This paper presents test results obtained from punching shear tests performed on prestressed precast deck specimens. Cracking patterns, failure modes, deflections, and stresses are included as well as discussion of the punching shear strength observed during punching shear tests. Static lest specimens had punching shear failures at loads much higher than predicted by the current codes. Tests results indicate that current code provisions appear to be conservative.

Energy-Based Seismic Evaluation of Reinforced Concrete Structures I - Flexural Components (에너지에 근거한 철근콘크리트 구조물의 내진성능 평가 I - 휨요소)

  • 김장훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.33-44
    • /
    • 1999
  • An energy balance procedure is developed to incorporate the effects of earthquake duration which involves the effect of cyclic loading and the corresponding cumulative plastic deformation. Particular emphasis is given to the flexural failure of non-seismically designed columns of reinforced concrete frames. For this, conceptual strength deterioration models for columns, governed by concrete, anchorage failure and longitudinal steel fracture due to low-cycle fatigue, are proposed. It is evident that the energy-based method has good agreement with the experimental data and is able to predict the failure mode.

  • PDF

Rigid-Body-Spring Network with Visco-plastic Damage Model for Simulating Rate Dependent Fracture of RC Beams (Rigid-Body-Spring Network를 이용한 RC 보의 속도 의존적 파괴 시뮬레이션)

  • Lim, Yun-Mook;Kim, Kun-Hwi;Ok, Su-Yeol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.265-268
    • /
    • 2011
  • 하중 속도에 따른 콘크리트 재료의 역학적 특성은 구조물의 동적파괴거동에 영향을 미친다. 본 연구는, rigid-body-spring network를 이용하여 파괴해석을 수행하고, 거시적 시뮬레이션에서 속도효과를 표현하기 위하여 점소성 파괴모델을 적용하였다. 보정을 위해서 Perzyna 구성관계식의 점소성 계수들이 다양한 하중속도에 따른 직접인장실험을 통해서 결정되었다. 동정상승계수를 이용하여 하중 속도가 증가함에 따른 강도 증가를 표현하였고 이를 실험결과와 비교하였다. 다음으로 느린 하중속도와 빠른 하중속도에 따라 단순 콘크리트 보와 철근 콘크리트 보에 대한 휨 실험을 수행하였으며, 하중 속도에 따라서 서로 다른 균열 패턴을 관찰할 수 있었다. 빠른 하중은 보의 파괴가 국부적으로 나타나게 만드는데, 이는 속도 의존적 재료의 특성 때문이다. 구조적인 측면에서, 보강재는 느린 하중속도에서 균열의 크기를 줄이고 연성을 높이는 데 큰 영향을 미친다. 본 논문은 속도 의존적 거동에 대한 이해와 동적하중에 대한 보강효과를 제시한다.

  • PDF

Size Effect Analysis for Shear Strength of Large Reinforced Concrete Beams (대형 철근콘크리트 보의 전단강도에 대한 크기효과 해석)

  • 한상호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.345-352
    • /
    • 1999
  • 철근콘크리트 보의 전단강도에 대한 크리효과는 다른 각종 강도에 대한 크기효과에 비해 현저히 나타난다는 것이 많은 실험적 연구로부터 입증되었으며, 이를 배경으로 세계 여러 나라의 전단강도에 대한 설계 기준식들이 전단강도의 크리효과를 반영하고 있는 실정이다. 그러나, 철근콘크리트 구조물이 점점 대형화됨으로써 이와 같은 설계 기준식의 실험적 검토는 사실상 불가능하게 될 것이다. 본 연구에서는 파괴역학에 근거한 비선형 유한요소프로그램을 이용하여 전단보강철근이 없는 대형 철근콘크리트 보의 전단강도에 대한 크기 효과를 재현해 보았다. 또한, 해석 및 실험결과를 이용하여 크기효과가 고려된 몇 가지 대표적인 전단강도식과 비교하였다.

  • PDF

Punching Shear Behavior of High-strength Lightweight Concrete Slab Under Concentrated Load (집중하중을 받는 고강도 경량콘크리트 바닥판의 펀칭전단 거동)

  • Cho, Sun-Kyu;Kwark, Jong-Won;Lee, Jong-Min;Moon, Dae-Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.219-228
    • /
    • 2006
  • Because of the advantage of light weight, lightweight concrete is frequently applied to long-span bridges and high-rise buildings. In the country, there is not enough experience for the long-span bridges using lightweight concrete. This paper presents results of an experimental study on the punching shear strength of high-strength lightweight concrete slabs. Four test slabs are fabricated using high-strength lightweight concrete and normalweight concrete and at the center of the test slabs, simulated wheel load is applied until failure. The compressive strengths of lightweight concrete and normalweight concrete are 47MPa and 32MPa, respectively. The test results show the failure mode of all specimens are punching shear and the behaviors of high-strength lightweight concrete slabs are very similar to that of normalweight concrete slabs. Based on the test results, it is discussed the safety and serviceability of high-strength lightweight concrete bridge decks.

Experimental and Analytical studies on Failure Behavior of Stud Shear Connectors in CFT Structures (CFT 구조에 적용된 스터드 전단연결재의 파괴 거동에 대한 실험 및 해석적 연구)

  • Lee, Sangyoon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.400-412
    • /
    • 2013
  • For the composite behavior of steel tube and inner concrete, the shear connectors should be applied to the CFT structures. However, the present design codes don't provide the design criteria that can be applied on shear connectors in the CFT structures typically filled with plain concrete. This study has been carried out to propose design criteria (shear strength and resistance factor) for the stud shear connectors in CFT structures. Experimental tests using the push-out specimens with the plain concrete blocks and finite element analysis were conducted for the purpose of verifying the main failure mode to propose the shear strength of studs in CFT structures. From the results of this study, the main failure mode of studs in CFT structures is splitting crack of concrete and this failure mode reduces shear strength of studs in CFT structures relatively to those embedded in RC blocks.

Punching Behavior of Concrete Strengthening with CFRP Sheet under Low Velocity Impact Loading (CFRP Sheet로 보강한 콘크리트의 저속 충격하중에 하에서의 펀칭파괴 거동)

  • Min, Kyung-Hwan;Cho, Seong-Hun;Ahn, Mi-Young;Lee, Jin-Young;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.9-10
    • /
    • 2010
  • In this study, the static and low velocity impact tests for two-way concrete specimens strengthening with the CFRP sheets were carried out. The specimens that had a dimension of $50{\times}350{\times}350mm$ with 40 MPa plain concrete and steel fiber reinforced concrete which had same mixture to plain concrete and 0.75% steel fibers were fabricated. The specimens reinforced with the CFRP or steel fibers showed mixed failure modes, splitting and punching, also splitting cracks and fragments were much reduced than plain concrete specimens'. Two-way concrete members reinforced with the CFRP and steel fiber simultaneously dissipated 6.8 times larger energy than not-retrofitted members' under the low-velocity impact loading.

  • PDF