• Title/Summary/Keyword: 콘크리트 양생

Search Result 738, Processing Time 0.026 seconds

The study on mechanical properties of PC panel with steam curing condition (증기양생 조건에 따른 터널 PC 패널의 물리적 특성에 관한 연구)

  • Ma, Sang-Joon;Jang, Pil-Sung;Shiin, Jin-Yong;Nam, Kwan-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • Many problems exist in the current cast in place concrete lining used in domestic tunnel construction. Especially, the crack of tunnel lining brings about a social and economic problem. It has a lot of influence on stability of structure and the fine finish of lining. So enormous repair-work and reinforcement of tunnel lining could occur an running out of government's budget. In our country, there are domestic production enterprises which produce a special pre-cast concrete product, but the technical level of them is still far behind compared to developed countries. Also, optimum steam coring method is important for the production of high quality product. But there is no regulation of steam curing method in our country. This study is to investigate the properties of PC panel according to the variation of steam curing conditions such as presteaming time and rate of temperature rise. The result shows that the optimum presteaming time of steam curing method in PC panel is more than 1 hour and the desirable rate of temperature in curing chamber is about $20^{\circ}C/hr$.

  • PDF

A Study on the Mechanical Properties of Carbon Fiber Reinforced Cement Composite Impregnated in Polymer (폴리머 함침 탄소섬유보강 시멘트 복합체의 역학적 특성에 관한 연구)

  • ;;Lee, Burtrand. I.
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.107-118
    • /
    • 1992
  • In order to examine the mechanical properties of carbon fiber reinforced cement composites with silica powder PAN - based carbon fiber and Pitch- based carbon fiber, and polymer impregnators experimental studies on CFRC impregnated in polymer were carried out. The effects of types, length, and content~i of carbon fibers and matrices of fresh and hardened CFRC impregnated in polymer were examined. The test results show that compressive, tensile, and flexural strength of CFRC impregnated in polymer were much more iriCreased than those of air cured and autodaved CFIIC CFRC impregnated in polymer was also considerably effective in improving toughness, freeze thaw resistance, loss of shrinkage, and creep resist ance, compared with air cured and autoclaved CFRC.

The Strength Properties Of Light-Weight Formed Concrete According To Curing Times And Replacement Ratio Of WCP (폐콘크리트 미분말 대체율과 양생시간에 따른 경량기포콘크리트의 강도 특성)

  • Shin, Sang-Chul;Kim, Kee-Seok;Ra, Jeong-Min;Choi, Duck-Jin;Jeong, Ji-Yong;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.373-374
    • /
    • 2010
  • This study is to search for recycling method of the WCP(waste concrete powder). From the experiment analysis on the chemical composition, we confirmed that $SiO_2$ was occupied about 60% of WCP. To investigate the applicability of WCP as replacement material of Quartz, we tested the properties of autoclaved light weight concrete containing WCP. As a results, when increasing the replacement of WCP, compressive strength decreased and pore diameter did not change. On the other hand, when increasing curing times, compressive strength and pore diameter increased.

  • PDF

A Study on the Strength Prediction of Crushed Sand Concrete by Ultra-sonic Velocity Method (초음파속도법에 의한 부순모래 콘크리트의 강도 추정에 관한 연구)

  • Kim, Myung-Sik;Baek, Dong-Il;Youm, Chi-Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.71-78
    • /
    • 2007
  • Schmidt hammer and ultra-sonic method are commonly used for crushed sand concrete compressive strength test in a construction field. At present, various of equations for prediction of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between prediction strength by presentation equations and destructive strength to test specimen, and find out which is a suitable equation for the construction site. In this study, a strength test was carried out destructive test by means of core sampling and traditional test. The experimental parameter were concrete age, curing condition, and strength level.

The Effects of Curing Age and Thickness of Coating Material on the Bond Strength of PCS-Coated Rebar to Cement Concrete (도장재의 양생재령과 도장두께가 PCS 도장철근과 시멘트 콘크리트와의 부착강도에 미치는 영향)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.331-339
    • /
    • 2017
  • The purpose of this study is to evaluate the effect of curing age and thickness of coating material on the bond strength of polymer cement slurry(PCS)-coated rebar that can replace epoxy-coated rebar. The test specimens were prepared with two types of cement, two types of polymer dispersion as St/BA and EVA, two polymer-cement ratios, two coating thicknesses and three curing ages, and tested for bond strength test to cement concrete. The flexural behavior of RC beam that is made by optimum conditions such as polymer-cement ratio of 80%, coating thickness of $100{\mu}m$ and curing age of 7 days of PCS recommended from the bond strength test is also conducted. From the test results, The maximum bond strength of PCS-coated rebar at curing age of 7-day and coating thickness of $100{\mu}m$ was about 1.52 and 1.58 times respectively, the strength of plain and epoxy-coated rebar. The ultimate loads of RC beam using PCS-coated rebar were range of 81.1% to 102.3% of that of plain rebar, and 98.4% to 124.1% of that of epoxy-coated rebar. It is apparent that PCS-coated rebar with EVA, curing age at 7-day and $100{\mu}m$ can replace epoxy-coated rebar in construction field.

Investigation of Early-Age Concrete Strength Development Using Hardening Accelerator (경화촉진제를 사용한 콘크리트의 초기강도 발현 특성 검토)

  • Kim, Gyu-Yong;Kim, Yong-Ro;Park, Jong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, performance of hardening accelerator types which promote setting and hardening of cement has been reviewed in order to develop early age strength of concrete with compressive strength of 21~27 MPa after examination of strength development of the concrete at early age according to curing temperature and unit cement(binder) content. As results, soluble mineral salt showed better hardening acceleration effect than organic salt in the scope of this study. Also, hydration reaction accelerating effect of $C_3S$ by Soluble mineral salt is effective on development of early age compressive strength and it was shown that the Pt's hydration reaction accelerating effect was the best. Construction duration reduction can be expected by securing compressive strength for prevention of early aged freezing damage in 25hour-curing time under curing temperature at $15^{\circ}C$. Also, it was shown that compressive strength of specimen cured at $5^{\circ}C$ was similar with plain specimen cured at $10^{\circ}C$. Therefore, it is expected that fuel costs and carbon dioxide can be reduced when the same construction duration is considered.

Strength Characteristics in 3D-printed Concrete with Interlayer Reinforcements (층간 보강재로 보강한 3D 프린팅 콘크리트의 강도 특성)

  • Lee, Jung Woo;Park, Ji-Hun;Bui, The Quang;Jo, Changbin;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.338-347
    • /
    • 2021
  • This paper aims to evaluating the interlayer strength of 3D-printed concrete with interlayer reinforcement. According to lap splices, two reinforcement methods were considered. One method did not include lap splices of interlayer reinforcement, but the other method included lap splices with length of 40mm. In addition, two different curing conditions were applied: air curing conditions and water curing conditions. The compressive, splitting tensile, and flexural tensile strengths of 3D-printed concrete specimens were measured in three loading directions with different reinforcement methods and curing conditions. Splitting and flexural tensile strengths decreased considerably when tensile stresses acted over the interlayers of 3D-printed concrete specimens. However, the flexural tensile strength or interlayer bonding strength of the printed specimens increased significantly at the interlayers when the longitudinal interlayer reinforcement penetrated printed layers. Interlayer bonding strength of printed concrete decreased after air curing treatment was applied because interlayers of printed concrete with more pores formed by the air cu ring conditions are more vulnerable to the load.

A Study on the Shrinkage Stresses in Polymer Concrete Overlays (폴리머 콘크리트 오버레이의 수축응력에 관한 연구)

  • Jo, Young-Kug;Soh, Yang-Seob
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.197-205
    • /
    • 1997
  • The shrinkage of polymer concrete overlays to cement concrete causes interface shear, normal and axial stresses in the overlays. These can lead to deterioration of the polymer concrete overlays due to affection of adhesion polymer concrete and cement concrete. The shrinkage stress in the polymer concrete cause it to shorten and the shorting is measured: With the modulus of elasticity of the polymer concrete and strain known the stresses can be calculated. The purpose of this study is to provide the basic data of application of polymer concrete overlays such as bridge decks, highway and airport pavement repair and overlay materials. From the test results. It has been found that depending on the type polymer. overlay thickness, time after curing and temperature. the shrinkage stresses are eliminated by relaxation in time ranging from a few hours to a few days.

Surface Curing Method of Hot weather Concreting with the Combination of Surface Curing sheets (표면 양생시트 조합에 의한 서중콘크리트용 표면 양생공법)

  • Lee, Ju-Suck;Kim, Jong-Back;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.785-788
    • /
    • 2006
  • This paper investigates the temperature history of slab mock-up specimens with various surface curing sheets, in order to determine a favorable surface curing method in hot weather condition. Test showed that insulating double bubble sheets+aluminum foil simultaneously on the upper section of a specimen prevented an increase of sudden temperature and a decrease of vaporization when placed during the hot weather condition. It also secured the high strength in early age. Therefore it is found that using the double bubble sheets+aluminum foil on concrete surface declined the plastic and drying shrinkage and inclined the early strength, thus improving the concrete quality.

  • PDF

Evaluation on In-Site Compressive Strength of High-Strength Concrete Mass Elements under Cold Weather (혹한기 고강도 콘크리트 매스부재의 현장 압축강도 평가)

  • Mun, Jae-Sung;Yang, Keun-Hyeok;Kim, Do-Gyeu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.589-595
    • /
    • 2015
  • This study evaluated the in-site compressive strength development of high-strength concrete developed for the mass structures under cold weather condition. Two mock-up wall specimens with $2.0{\times}1.2{\times}1.0m$ in dimension were cured under an average temperature of $5^{\circ}C$. Core strengths measured at different locations of the mock-up walls were compared with the companion standard cylinder strengths. Test results revealed that the core strength of mock-up walls at an age of 3 days is higher by approximately 30% than the companion cylinder strength because of the high curing temperature effect generated from the heat of hydration of cementitious materials. Furthermore, comparisons with the prediction models based on maturity function confirmed that the effect of hydration heat on the curing temperature increase needs to be reflected to reasonably evaluate the on-site compressive strength development of concrete for mass elements.