• Title/Summary/Keyword: 컴퓨팅 자원

Search Result 1,305, Processing Time 0.029 seconds

A Secure 6LoWPAN Re-transmission Mechanism for Packet Fragmentation against Replay Attacks (안전한 6LoWPAN 단편화 패킷 재전송 기법에 관한 연구)

  • Kim, Hyun-Gon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.101-110
    • /
    • 2009
  • The 6LoWPAN(IPv6 Low-power Wireless Personal Area Network) performs IPv6 header compression, TCP/UDP/IGMP header compression, packet fragmentation and re-assemble to transmit IPv6 packet over IEEE 802,15.4 MAC/PHY. However, from the point of view of security. It has the existing security threats issued by IP packet fragmenting and reassembling, and new security threats issued by 6LoWPAN packet fragmenting and reassembling would be introduced additionally. If fragmented packets are retransmitted by replay attacks frequently, sensor nodes will be confronted with the communication disruption. This paper analysis security threats introduced by 6LoWPAN fragmenting and reassembling, and proposes a re-transmission mechanism that could minimize re-transmission to be issued by replay attacks. Re-transmission procedure and fragmented packet structure based on the 6LoWPAN standard(RFC4944) are designed. We estimate also re-transmission delay of the proposed mechanism. The mechanism utilizes timestamp, nonce, and checksum to protect replay attacks. It could minimize reassemble buffer overflow, waste of computing resource, node rebooting etc., by removing packet fragmentation and reassemble unnecessary.

Analyses of Security Issues and Vulnerability for Healthcare System For Under Internet of Things (사물인터넷과 융합한 헬스케어 시스템에서의 보안 이슈 및 취약점 분석)

  • Jung Tae Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.699-706
    • /
    • 2023
  • Recently, the 4 generation industry revolution is developed with advanced and combined with a variety of new technologies. Conventional healthcare system is applied with IoT application. It provides many advantages with mobility and swift data transfers to patient and doctor. In despite of these kinds of advantages, it occurred security issues between basic devices and protocols in their applications. Especially, internet of things have restricted and limited resources such as small memory capacity, low capability of computing power, etc. Therefore, we can not utilize conventional mechanism. In this paper, we analyzed attacks and vulnerability in terms of security issues. To analyze security structure, features, demands and requirements, we solve the methods to be reduced security issues.

Analyses of Security Issues and Requirements Under Surroundings of Internet of Things (사물인터넷 환경하에서 보안 이슈 및 요구사항 분석)

  • Jung Tae Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.639-647
    • /
    • 2023
  • A variety of communications are developed and advanced by integration of wireless and wire connections with heterogeneous system. Traditional technologies are mainly focus on information technology based on computer techniques in the field of industry, manufacture and automation fields. As new technologies are developed and enhanced with traditional techniques, a lot of new applications are emerged and merged with existing mechanism and skills. The representative applications are IoT(Internet of Things) services and applications. IoT is breakthrough technologies and one of the innovation industries which are called 4 generation industry revolution. Due to limited resources in IoT such as small memory, low power and computing power, IoT devices are vulnerable and disclosed with security problems. In this paper, we reviewed and analyzed security challenges, threats and requirements under IoT service.

Fashion Category Oversampling Automation System

  • Minsun Yeu;Do Hyeok Yoo;SuJin Bak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.31-40
    • /
    • 2024
  • In the realm of domestic online fashion platform industry the manual registration of product information by individual business owners leads to inconvenience and reliability issues, especially when dealing with simultaneous registrations of numerous product groups. Moreover, bias is significantly heightened due to the low quality of product images and an imbalance in data quantity. Therefore, this study proposes a ResNet50 model aimed at minimizing data bias through oversampling techniques and conducting multiple classifications for 13 fashion categories. Transfer learning is employed to optimize resource utilization and reduce prolonged learning times. The results indicate improved discrimination of up to 33.4% for data augmentation in classes with insufficient data compared to the basic convolution neural network (CNN) model. The reliability of all outcomes is underscored by precision and affirmed by the recall curve. This study is suggested to advance the development of the domestic online fashion platform industry to a higher echelon.

Fine-tuning Method to Improve Sentiment Classification Perfoimance of Review Data (리뷰 데이터 감성 분류 성능 향상을 위한 Fine-tuning 방법)

  • Jung II Park;Myimg Jin Lim;Pan Koo Kim
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.44-53
    • /
    • 2024
  • Companies in modern society are increasingly recognizing sentiment classification as a crucial task, emphasizing the importance of accurately understanding consumer opinions opinions across various platforms such as social media, product reviews, and customer feedback for competitive success. Extensive research is being conducted on sentiment classification as it helps improve products or services by identifying the diverse opinions and emotions of consumers. In sentiment classification, fine-tuning with large-scale datasets and pre-trained language models is essential for enhancing performance. Recent advancements in artificial intelligence have led to high-performing sentiment classification models, with the ELECTRA model standing out due to its efficient learning methods and minimal computing resource requirements. Therefore, this paper proposes a method to enhance sentiment classification performance through efficient fine-tuning of various datasets using the KoELECTRA model, specifically trained for Korean.

A Study on Vulnerability for Isolation Guarantee in Container-based Virtualization (컨테이너 기반 가상화에서 격리성 보장을 위한 취약성 고찰)

  • Dayun Yum;Dongcheon Shin
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.23-32
    • /
    • 2023
  • Container-based virtualization has attracted many attentions as an alternative to virtual machine technology because it can be used more lightly by sharing the host operating system instead of individual guest operating systems. However, this advantage may owe some vulnerabilities. In particular, excessive resource use of some containers can affect other containers, which is known as the noisy neighbor problem, so that the important property of isolation may not be guaranteed. The noisy neighbor problem can threat the availability of containers, so we need to consider the noisy neighbor problem as a security problem. In this paper, we investigate vulnerabilities on guarantee of isolation incurred by the noisy neighbor problem in container-based virtualization. For this we first analyze the structure of container-based virtualization environments. Then we present vulnerabilities in 3 functional layers and general directions for solutions with limitations.

Implementation of a Window-Masking Method and the Soft-core Processor based TDD Switching Control SoC FPGA System (윈도 마스킹 기법과 Soft-core Processor 기반 TDD 스위칭 제어 SoC 시스템 FPGA 구현)

  • Hee-Jin Yang;Jeung-Sub Lee;Han-Sle Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.166-175
    • /
    • 2024
  • In this paper, the Window-Masking Method and HAT (Hardware Attached Top) CPU SoM (System on Module) are used to improve the performance and reduce the weight of the MANET (Mobile Ad-hoc Network) network synchronization system using time division redundancy. We propose converting it into a RISC-V based soft-core MCU and mounting it on an FPGA, a hardware accelerator. It was also verified through experiment. In terms of performance, by applying the proposed technique, the synchronization acquisition range is from -50dBm to +10dBm to -60dBm to +10dBm, the lowest input level for synchronization is increased by 20% from -50dBm to -60dBm, and the detection delay (Latency) is 220ns. Reduced by 43% to 125ns. In terms of weight reduction, computing resources (48%), size (33%), and weight (27%) were reduced by an average of 36% by replacing with soft-core MCU.

Time Reduction for Package Warpage Optimization based on Deep Neural Network and Bayesian Optimization (심층신경망 및 베이지안 최적화 기반 패키지 휨 최적화 시간 단축)

  • Jungeon Lee;Daeil Kwon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.50-57
    • /
    • 2024
  • Recently, applying a machine learning to surrogate modeling for rapid optimization of complex designs have been widely researched. Once trained, the machine learning surrogate model can predict similar outputs to Finite Element Analysis (FEA) simulations but require significantly less computing resources. In addition, combined with optimization methodologies, it can identify optimal design variable with less time requirement compared to iterative simulation. This study proposes a Deep Neural Network (DNN) model with Bayesian Optimization (BO) approach for efficiently searching the optimal design variables to minimize the warpage of electronic package. The DNN model was trained by using design variable-warpage dataset from FEA simulation, and the Bayesian optimization was applied to find the optimal design variables which minimizing the warpage. The suggested DNN + BO model shows over 99% consistency compared to actual simulation results, while only require 15 second to identify optimal design variable, which reducing the optimization time by more than 57% compared to FEA simulation.

Generalized On-Device AI Framework for Semantic Segmentation (의미론적 분할을 위한 범용 온디바이스 AI 프레임워크)

  • Jun-Young Hong;Kyung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.903-910
    • /
    • 2024
  • Complex semantic segmentation tasks are primarily performed in server environments equipped with high-performance graphics hardware such as GPUs and TPUs. This cloud-based AI inference method operates by transmitting processed results to the client. However, this approach is dependent on network communication and raises concerns about privacy infringement during the process of transmitting user data to servers. Therefore, this paper proposes a Generalized On-Device Framework for Semantic Segmentation that can operate in mobile environments with high accessibility to people. This framework supports various semantic segmentation models and enables direct inference in mobile environments through model conversion and efficient memory management techniques. It is expected that this research approach will enable effective execution of semantic segmentation algorithms even in resource-constrained situations such as IoT devices, autonomous vehicles, and industrial robots, which are not cloud computing environments. This is expected to contribute to the advancement of real-time image processing, privacy protection, and network-independent AI application fields.

A Study on Scalability of Profiling Method Based on Hardware Performance Counter for Optimal Execution of Supercomputer (슈퍼컴퓨터 최적 실행 지원을 위한 하드웨어 성능 카운터 기반 프로파일링 기법의 확장성 연구)

  • Choi, Jieun;Park, Guenchul;Rho, Seungwoo;Park, Chan-Yeol
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.10
    • /
    • pp.221-230
    • /
    • 2020
  • Supercomputer that shares limited resources to multiple users needs a way to optimize the execution of application. For this, it is useful for system administrators to get prior information and hint about the applications to be executed. In most high-performance computing system operations, system administrators strive to increase system productivity by receiving information about execution duration and resource requirements from users when executing tasks. They are also using profiling techniques that generates the necessary information using statistics such as system usage to increase system utilization. In a previous study, we have proposed a scheduling optimization technique by developing a hardware performance counter-based profiling technique that enables characterization of applications without further understanding of the source code. In this paper, we constructed a profiling testbed cluster to support optimal execution of the supercomputer and experimented with the scalability of the profiling method to analyze application characteristics in the built cluster environment. Also, we experimented that the profiling method can be utilized in actual scheduling optimization with scalability even if the application class is reduced or the number of nodes for profiling is minimized. Even though the number of nodes used for profiling was reduced to 1/4, the execution time of the application increased by 1.08% compared to profiling using all nodes, and the scheduling optimization performance improved by up to 37% compared to sequential execution. In addition, profiling by reducing the size of the problem resulted in a quarter of the cost of collecting profiling data and a performance improvement of up to 35%.