• Title/Summary/Keyword: 컬러 모델

Search Result 310, Processing Time 0.02 seconds

Secured Verification of Intrusion Prevention System Security Model Based on CPNs (CPN 기반의 침입방지시스템 보안모델의 안정성 검증)

  • Lee, Moon-Goo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.3
    • /
    • pp.76-81
    • /
    • 2011
  • Intrusion prevention systems (IPS) are important solution about solved problems for inside system security or outsider attacks. When introduce this system, first consideration item is secured rather than multiple function. Colored Petri Nets (CPNs) used that in order to secured verification for user authentication function of intrusion prevention system security model. CPNs is a graphical modeling language suitable for modeling distributed, concurrent, deterministic or non-deterministic systems with synchronous. Like these CPNs was expressed every possible state and occurrence graph. Secured of IPS security model was verified because expression every state using CPN tool and as a result of analyzing the occurrence graph was without a loop or interruption.

Hybrid Model Representation for Progressive Indoor Scene Reconstruction (실내공간의 점진적 복원을 위한 하이브리드 모델 표현)

  • Jung, Jinwoong;Jeon, Junho;Yoo, Daehoon;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.5
    • /
    • pp.37-44
    • /
    • 2015
  • This paper presents a novel 3D model representation, called hybrid model representation, to overcome existing 3D volume-based indoor scene reconstruction mechanism. In indoor 3D scene reconstruction, volume-based model representation can reconstruct detailed 3D model for the narrow scene. However it cannot reconstruct large-scale indoor scene due to its memory consumption. This paper presents a memory efficient plane-hash model representation to enlarge the scalability of the indoor scene reconstruction. Also, the proposed method uses plane-hash model representation to reconstruct large, structural planar objects, and at the same time it uses volume-based model representation to recover small detailed region. Proposed method can be implemented in GPU to accelerate the computation and reconstruct the indoor scene in real-time.

A Study on the Image Preprosessing model linkage method for usability of Pix2Pix (Pix2Pix의 활용성을 위한 학습이미지 전처리 모델연계방안 연구)

  • Kim, Hyo-Kwan;Hwang, Won-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.380-386
    • /
    • 2022
  • This paper proposes a method for structuring the preprocessing process of a training image when color is applied using Pix2Pix, one of the adversarial generative neural network techniques. This paper concentrate on the prediction result can be damaged according to the degree of light reflection of the training image. Therefore, image preprocesisng and parameters for model optimization were configured before model application. In order to increase the image resolution of training and prediction results, it is necessary to modify the of the model so this part is designed to be tuned with parameters. In addition, in this paper, the logic that processes only the part where the prediction result is damaged by light reflection is configured together, and the pre-processing logic that does not distort the prediction result is also configured.Therefore, in order to improve the usability, the accuracy was improved through experiments on the part that applies the light reflection tuning filter to the training image of the Pix2Pix model and the parameter configuration.

Automatic Generation of the Personal 3D Face Model (3차원 개인 얼굴 모델 자동 생성)

  • Ham, Sang-Jin;Kim, Hyoung-Gon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.104-114
    • /
    • 1999
  • This paper proposes an efficient method for the automatic generation of personalized 3D face model from color image sequence. To detect a robust facial region in a complex background, moving color detection technique based on he facial color distribution has been suggested. Color distribution and edge position information in the detected face region are used to extract the exact 31 facial feature points of the facial description parameter(FDP) proposed by MPEG-4 SNHC(Synthetic-Natural Hybrid Coding) adhoc group. Extracted feature points are then applied to the corresponding vertex points of the 3D generic face model composed of 1038 triangular mesh points. The personalized 3D face model can be generated automatically in less then 2 seconds on Pentium PC.

  • PDF

Predicting Unseen Object Pose with an Adaptive Depth Estimator (적응형 깊이 추정기를 이용한 미지 물체의 자세 예측)

  • Sungho, Song;Incheol, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.509-516
    • /
    • 2022
  • Accurate pose prediction of objects in 3D space is an important visual recognition technique widely used in many applications such as scene understanding in both indoor and outdoor environments, robotic object manipulation, autonomous driving, and augmented reality. Most previous works for object pose estimation have the limitation that they require an exact 3D CAD model for each object. Unlike such previous works, this paper proposes a novel neural network model that can predict the poses of unknown objects based on only their RGB color images without the corresponding 3D CAD models. The proposed model can obtain depth maps required for unknown object pose prediction by using an adaptive depth estimator, AdaBins,. In this paper, we evaluate the usefulness and the performance of the proposed model through experiments using benchmark datasets.

CNN-ViT Hybrid Aesthetic Evaluation Model Based on Quantification of Cognitive Features in Images (이미지의 인지적 특징 정량화를 통한 CNN-ViT 하이브리드 미학 평가 모델)

  • Soo-Eun Kim;Joon-Shik Lim
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.352-359
    • /
    • 2024
  • This paper proposes a CNN-ViT hybrid model that automatically evaluates the aesthetic quality of images by combining local and global features. In this approach, CNN is used to extract local features such as color and object placement, while ViT is employed to analyze the aesthetic value of the image by reflecting global features. Color composition is derived by extracting the primary colors from the input image, creating a color palette, and then passing it through the CNN. The Rule of Thirds is quantified by calculating how closely objects in the image are positioned near the thirds intersection points. These values provide the model with critical information about the color balance and spatial harmony of the image. The model then analyzes the relationship between these factors to predict scores that align closely with human judgment. Experimental results on the AADB image database show that the proposed model achieved a Spearman's Rank Correlation Coefficient (SRCC) of 0.716, indicating more consistent rank predictions, and a Pearson Correlation Coefficient (LCC) of 0.72, which is 2~4% higher than existing models.

Design of the 3D Object Recognition System with Hierarchical Feature Learning (계층적 특징 학습을 이용한 3차원 물체 인식 시스템의 설계)

  • Kim, Joohee;Kim, Dongha;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 2016
  • In this paper, we propose an object recognition system that can effectively find out its category, its instance name, and several attributes from the color and depth images of an object with hierarchical feature learning. In the preprocessing stage, our system transforms the depth images of the object into the surface normal vectors, which can represent the shape information of the object more precisely. In the feature learning stage, it extracts a set of patch features and image features from a pair of the color image and the surface normal vector through two-layered learning. And then the system trains a set of independent classification models with a set of labeled feature vectors and the SVM learning algorithm. Through experiments with UW RGB-D Object Dataset, we verify the performance of the proposed object recognition system.

Extracting Method The New Roads by Using High-resolution Aerial Orthophotos (고해상도 항공정사영상을 이용한 신설 도로 추출 방법에 관한 연구)

  • Lee, Kyeong Min;Go, Shin Young;Kim, Kyeong Min;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.3-10
    • /
    • 2014
  • Digital maps are made by experts who digitize the data from aerial image and field survey. And the digital maps are updated every 2 years in National Geographic Information Institute. Conventional Digitizing methods take a lot of time and cost. And geographic information needs to be modified and updated appropriately as geographical features are changing rapidly. Therefore in this paper, we modify the digital map updates the road information for rapid high-resolution aerial orthophoto taken at different times were performed HSI color conversion. Road area of the cassification was performed the region growing methods. In addition, changes in the target area for analysis by applying the CVA technique to compare the changed road area by analyzing the accuracy of the proposed extraction.

A Study on Hand-signal Recognition System in 3-dimensional Space (3차원 공간상의 수신호 인식 시스템에 대한 연구)

  • 장효영;김대진;김정배;변증남
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.103-114
    • /
    • 2004
  • This paper deals with a system that is capable of recognizing hand-signals in 3-dimensional space. The system uses 2 color cameras as input devices. Vision-based gesture recognition system is known to be user-friendly because of its contact-free characteristic. But as with other applications using a camera as an input device, there are difficulties under complex background and varying illumination. In order to detect hand region robustly from a input image under various conditions without any special gloves or markers, the paper uses previous position information and adaptive hand color model. The paper defines a hand-signal as a combination of two basic elements such as 'hand pose' and 'hand trajectory'. As an extensive classification method for hand pose, the paper proposes 2-stage classification method by using 'small group concept'. Also, the paper suggests a complementary feature selection method from images from two color cameras. We verified our method with a hand-signal application to our driving simulator.

Natural Image Segmentation Considering The Cyclic Property Of Hue Component (색상의 주기성을 고려한 자연영상 분할방법)

  • Nam, Hye-Young;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.16-25
    • /
    • 2009
  • In this paper we propose the block based image segmentation method using the cyclic properties of hue components in HSI color model. In proposed method we use center point instead of hue mean values as the hue representatives for regions in image segmentation considering hue cyclic properties and we also use directed distance for the hue difference among regions. Furthermore we devise the simple and effective method to get critical values through control parameter to reduce the complexity in the calculation of those in the conventional method. From the experimental results we found that the segmented regions in the proposed method is more natural than those in the conventional method especially in texture and red tone regions. In the simulation results the proposed method is better than the conventional methods in the in the evaluation of the human segmentation dataset presented Berkely Segmentation Database.