References
- Lo, K. Y., Liu, K. H., & Chen, C. S., "Assessment of photo aesthetics with efficiency," Proc. of the 21st International Conference on Pattern Recognition (ICPR2012), pp.2186-2189, IEEE, 2012.
- Stepanova, E., "The impact of color palettes on the prices of paintings," Empirical Economics, vol.56, no.2, pp.755-773, 2019.
- Karp, A., & Itten, J., "The elements of color," Leonardo, vol.5, no.2, p.180, 1972.
- O'Donovan, P., Agarwala, A., & Hertzmann, A., "Color compatibility from large datasets," ACM Transactions on Graphics, vol.30, no.4, pp. 1-12, 2011. DOI: 10.1145/2010324.1964958
- Tan, J. C., Echevarria, J., & Gingold, Y., "Efficient palette-based decomposition and recoloring of images via RGBXY-space geometry," ACM Transactions on Graphics, vol.37, no.6, pp.1-10, 2018. DOI: 10.1145/3272127.3275054
- Lu, P., Yu, J. B., & Peng, X. J., "Deep conditional color harmony model for image aesthetic assessment," Proc. of the 2018 24th International Conference on Pattern Recognition (ICPR), pp.2845-2850, IEEE, 2018. DOI: 10.1109/icpr.2018.8546328.
- Schloss, K. B., & Palmer, S. E., "Aesthetics of color combinations," SPIE Proc. of Human Vision and Electronic Imaging XV, SPIE, 2010. DOI: 10.1117/12.849111.
- Leder, H., Belke, B., Oeberst, A., & Augustin, D., "A model of aesthetic appreciation and aesthetic judgments," Brit. J. Psychol. vol.95, no.4, pp.489-508, 2004. DOI: 10.1348/0007126042369811.
- Anwar, A., et al., "A survey on image aesthetic assessment," arXiv preprint, arXiv:2103.11616, 2021.
- Schultze, S., Withoft, A., Abdenebaoui, L., & Boll, S., "Explaining Image Aesthetics Assessment: An Interactive Approach," Proc. of the 2023 ACM International Conference on Multimedia Retrieval, pp.20-28, 2023. DOI: 10.1145/3591106.3592217
- Perona, F. R., Flores Gallego, M. J., & Puerta Callejon, J. M., "An application for aesthetic quality assessment in photography with interpretability features," Entropy, vol.23, no.11, p.1389, 2021. DOI: 10.3390/e23111389
- Deng, Y., Loy, C. C., & Tang, X., "Image aesthetic assessment: An experimental survey," IEEE Signal Process. Mag. vol.34, no.4, pp.80-106, 2017. DOI: 10.1109/MSP.2017.2696576
- Schwarz, K., Wieschollek, P., & Lensch, H. P., "Will people like your image? Learning the aesthetic space," Proc. of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp.2048-2057, IEEE, 2018. DOI: 10.1109/WACV.2018.00226
- Tong, J., et al., "An interpretable approach for automatic aesthetic assessment of remote sensing images," Front. Comput. Neurosci., vol.16, p.1077439, 2022. DOI: 10.3389/fncom.2022.1077439
- Li, C., & Chen, T., "Aesthetic visual quality assessment of paintings," IEEE Journal of Selected Topics in Signal Processing, vol.3, no.2, pp. 236-252, 2009. DOI: 10.1109/JSTSP.2009.2015077
- Kong, S., Shen, X., Lin, Z., Mech, R., & Fowlkes, C., "Photo aesthetics ranking network with attributes and content adaptation," Proc. of the 14th European Conference on Computer Vision (ECCV 2016), pp.662-679, Springer, 2016. DOI: 10.48550/arXiv.1606.01621
- Droste, M., Bauhaus 1919~1933, Dansk produktion: Book Service I/S, Copenhagen, Berlin, 1990.
- Nishiyama, M., Okabe, T., Sato, I., & Sato, Y., "Aesthetic quality classification of photographs based on color harmony," Proc. of CVPR 2011, pp.33-40, IEEE, 2011. DOI: 10.1109/CVPR.2011.5995539
- Krizhevsky, A., Sutskever, I., & Hinton, G. E., "ImageNet classification with deep convolutional neural networks," Commun. ACM, vol.60, pp. 84-90, 2017. DOI: 10.1145/3065386.
- Lu, X., Lin, Z., Jin, H., Yang, J., & Wang, J. Z., "RAPID: Rating pictorial aesthetics using deep learning," Proc. of the 22nd ACM International Conference on Multimedia, pp.457-466, 2014. DOI: 10.1145/2647868.2654927.
- Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H., "MobileNets: Efficient convolutional neural networks for mobile vision applications," arXiv preprint, arXiv:1704.04861, 2017. DOI: 10.48550/arXiv.1704.04861
- Simonyan, K., & Zisserman, A., "Very deep convolutional networks for large-scale image recognition," arXiv preprint, arXiv:1409.1556, 2014. DOI: 10.48550/arXiv.1409.1556
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A., "Going deeper with convolutions," Proc. of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1-9, IEEE, 2015. DOI: 10.1109/CVPR.2015.7298594.
- Talebi, H., & Milanfar, P., "NIMA: Neural image assessment," IEEE Transactions on Image Processing, vol.27, no.8, pp.3998-4011, 2018. DOI: 10.1109/TIP.2018.2831899
- Wu, O., Hu, W., & Gao, J., "Learning to predict the perceived visual quality of photos," Proc. of the 2011 International Conference on Computer Vision, pp.225-232, IEEE, 2011. DOI: 10.1109/ICCV.2011.6126246.
- Kong, S., Shen, X., Lin, Z., Mech, R., & Fowlkes, C., "Photo aesthetics ranking network with attributes and content adaptation," Proc. of the 14th European Conference on Computer Vision (ECCV 2016), pp.662-679, Springer, 2016. DOI: 10.48550/arXiv.1606.01621
- Gao, F., Li, Z., Yu, J., Yu, J., Huang, Q., & Tian, Q., "Style-adaptive photo aesthetic rating via convolutional neural networks and multi-task learning," Neurocomputing, vol.395, pp.247-254, 2020. DOI: 10.1016/j.neucom.2018.06.099.
- Murray, N., Marchesotti, L., & Perronnin, F., "AVA: A large-scale database for aesthetic visual analysis," Proc. of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2408-2415, IEEE, 2012. DOI: 10.1109/CVPR.2012.6247954
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N., "An image is worth 16×16 words: Transformers for image recognition at scale," arXiv preprint, arXiv:2010.11929, 2020. DOI: 10.48550/arXiv.2010.11929
- Gulati, A., et al., "Conformer: Convolution-augmented transformer for speech recognition," arXiv preprint, arXiv:2005.08100, 2020. DOI: 10.48550/arXiv.2005.08100
- Li, K., Wang, Y., Gao, P., Song, G., Liu, Y., Li, H., & Qiao, Y., "UniFormer: Unified transformer for efficient spatiotemporal representation learning," arXiv preprint, arXiv:2201.04676, 2022. DOI: 10.48550/arXiv.2201.04676
- Lokeshdhakar, "Color Thief," Lokesh Dhakar's Blog, [Available online](http://lokeshdhakar.com/projects/color-thief), accessed September 2023.
- Ke, Y., et al., "Image aesthetics assessment using composite features from transformer and CNN," Multimedia Systems, vol.29, no.5, pp.2483-2494, 2023.
- Li, Xuewei, et al. "A novel feature fusion method for computing image aesthetic quality." IEEE access, vol.8, pp.63043-63054. 2020. DOI: 10.1109/ACCESS.2020.2983725