Journal of the Korean Institute of Intelligent Systems
/
v.21
no.1
/
pp.6-11
/
2011
In this paper, we propose a gait-based human identification system using eigenfeature regularization and extraction (ERE). First, a gait feature for human identification which is called gait energy image (GEI) is generated from walking sequences acquired from a camera sensor. In training phase, regularized transformation matrix is obtained by applying ERE to the gallery GEI dataset, and the gallery GEI dataset is projected onto the eigenspace to obtain galley features. In testing phase, the probe GEI dataset is projected onto the eigenspace created in training phase and determine the identity by using a nearest neighbor classifier. Experiments are carried out on the CASIA gait dataset A to evaluate the performance of the proposed system. Experimental results show that the proposed system is better than previous works in terms of correct classification rate.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.3
/
pp.164-173
/
2014
In underwater robotics, vision would be a key element for recognition in underwater environments. However, due to turbidity an underwater optical camera is rarely available. An underwater imaging sonar, as an alternative, delivers low quality sonar images which are not stable and accurate enough to find out natural objects by image processing. For this, artificial landmarks based on the characteristics of ultrasonic waves and their recognition method by a shape matrix transformation were proposed and were proven in Part 1. But, this is not working properly in undulating and dynamically noisy sea-bottom. To solve this, we propose a framework providing a selection phase of likelihood candidates, a selection phase for final candidates, recognition phase and tracking phase in sequence images, where a particle filter based selection mechanism to eliminate fake candidates and a mean shift based tracking algorithm are also proposed. All 4 steps are running in parallel and real-time processing. The proposed framework is flexible to add and to modify internal algorithms. A pool test and sea trial are carried out to prove the performance, and detail analysis of experimental results are done. Information is obtained from tracking phase such as relative distance, bearing will be expected to be used for control and navigation of underwater robots.
최근 연구들에서, 증강 현실(Augmented Reality; AR) 환경에서의 촉각 상호작용에 대한 가능성이 논의되었다. 비젼 기반의 트래킹을 기초로 한 증강 현실 기술은 미리 정의된 2차원 마커(marker)를 이용하여, 카메라로부터 획득된 실시간 영상 위에 가상 물체를 증강한다. 그러나, 카메라로부터 획득된 데이터는 몇몇 오차 요인들, 예를 들어 마커의 위치를 인식하는데 나타나는 오차, 카메라 안에 존재하는 센서 잡음 등으로 인해서 마커 잡음(마커를 인식하면서 나타나는 잡음)이 불가결하게 발생하게 된다. 이러한 이유로 인해서, 사용자가 한 손에는 마커를, 다른 한 손으로는 촉감 장치를 이용하여, 마커에 증강된 물체를 만질 때, 마커 잡음은 힘의 떨림(force trembling)을 발생시킨다. 심지어, 이러한 현상은 정지된 마커에 증강된, 마커가 움직이지 않는 상황에서도 발생한다. 게다가, 마커 위에 증강된 물체가 약간 빠른 속도로 이동하게 될 경우, 측정된 이동 거리는 연속적인 프레임(frame)들 간의 불연속적일 수 있다. 만약 사용자가, 대략 30Hz로 위치와 방향이 갱신되는 가상물체를 촉각적으로 상호작용하려 한다면, 계산되는 반력은 급작스런 힘의 변화를 생성하게 될 수도 있다. 이러한 현상을 극복하기 위해서, 마커 잡음을 최소화하기 위해서 정적 임계값(constant threshold)을 이용할 뿐만 아니라, 보간법을 같이 사용한 방법이 있었다. 하지만, 이러한 방법은 정적 임계값을 이용하고, 영상 프레임 갱신 속도와(video frame rate)와 촉각 프레임 갱신 속도가 일정하다는 가정을 사용하였기 때문에, 여전히 힘의 불연속적인 발생이 나타난다. 따라서, 이 논문에서는 두 가지 방법을 이용하여 증강 현실 내에서, 발생할 수 있는 힘의 불연속적인 변화를 보정하는 두 가지 방법, 잡음 제거를 위한 확장된 칼만 필터(Extend Kalman Filter)와 영상과 촉각 갱신 속도 차이에 따른 갑작스런 힘의 변화를 제거하기 위한 적응적 외삽법(Adaptive Extrapolation method)을 제안한다.
In this paper we propose a new robust method to extract accurate human silhouettes indoors with active stereo camera. A prime application is for gesture recognition of mobile robots. The segmentation of distant moving objects includes many problems such as low resolution, shadows, poor stereo matching information and instabilities of the object and background color distributions. There are many object segmentation methods based on color or stereo information but they alone are prone to failure. Here efficient color, stereo and image segmentation methods are fused to infer object and background areas of high confidence. Then the inferred areas are incorporated in graph cut to make human silhouette extraction robust and accurate. Some experimental results are presented with image sequences taken using pan-tilt stereo camera. Our proposed algorithms are evaluated with respect to ground truth data and proved to outperform some methods based on either color/stereo or color/contrast alone.
In this paper, we propose a method for measuring the volume of packages for the efficient handling of the packages. Using the geometrical characteristics of the rectangular parallelepiped type objects, the method measures the volume of packages with one camera only in real time. In preprocessing of volume measurement, the method extracts outer lines of the object and then crossing points of the lines as feature points or vertexes. From these cross points(-feature points-), the volume of the package is calculated. Compared to the direct feature extraction, the proposed method shows especially the blurring robust result by using the line for feature extraction. Additionally, the method can get the stable result by considering object's direction. From experimental results, it is demonstrated that this method is very effective for the real time volume measurement of the rectangular parallelepiped.
Jeonghun Seo;Jiin Hwang;Pal Abhishek;Haeun Lee;Daesik Ko;Seokil Song
Journal of Platform Technology
/
v.12
no.3
/
pp.62-70
/
2024
Recent surveillance systems employ multiple sensors, such as cameras and radars, to enhance the accuracy of intrusion detection. However, object recognition through camera (RGB, Thermal) sensors may not always be accurate during nighttime, in adverse weather conditions, or when the intruder is camouflaged. In such situations, it is possible to detect intruders by utilizing the trajectories of objects extracted from camera or radar sensors. This paper proposes a method to detect intruders using only trajectory information in environments where object recognition is challenging. The proposed method involves training an LSTM-Attention based trajectory classification model using normal and abnormal (intrusion, loitering) trajectory data of animals and humans. This model is then used to identify abnormal human trajectories and perform intrusion detection. Finally, the validity of the proposed method is demonstrated through experiments using real data.
Kim, Kang-Soo;Park, Jung-Sik;Seo, Byung-Kuk;Park, Jong-Il
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2010.07a
/
pp.201-204
/
2010
물체 인식 및 추적 기술은 기계가 영상 정보를 기반으로 주변을 인지하고 정황을 파악하는 컴퓨터 비전 분야의 매우 중요한 연구 영역 중 하나이다. 현재까지 이러한 물체 인식/추적에 대한 다양한 연구들이 있어 왔고, 최근 증강현실에 대한 높은 관심을 바탕으로 증강현실을 위한 영상 정보 기반의 정확하고 정교한 추적 기술에 대한 관심 또한 매우 높아졌다. 본 논문에서는 텍스쳐가 없는 단색의 블록에 대해 증강현실을 실현하기 위한 물체 추적 방식을 제안한다. 제안하는 방식은 다수의 블록들을 조합하여 구성하고, 이 조합으로부터 추출한 특징점에 색상 정보 기반의 지역 서술자를 정의함으로써 사전에 정의된 서술자와 의 비교를 통해 물체를 추적하는 방식이다. 제안된 추적 방식은 사전에 기준이 되는 지역 서술자를 정의함에 있어서 기준 영상에 다양한 어파인 변환을 적용함으로써 카메라와 대상물과의 각도가 큰 입력 영상에 대해서도 추적에 실패하지 않는다. 실험을 통해 제안된 방식을 집 모양으로 구성한 블록 조합에 적용하여 3차원 가상 콘텐츠를 증강시켜 봄으로써 제안된 방식의 유용성을 확인하였다. 제안된 방식은 텍스쳐가 없는 환경에서 사용자의 상호작용으로 텍스쳐를 구성하고 이를 추적하는 방식으로 향후 아이들을 위한 교육 프로그램, 모바일 기기에서의 응용 프로그램 등으로 적용 가능하다.
Journal of Satellite, Information and Communications
/
v.12
no.2
/
pp.56-60
/
2017
This paper describes the design and implementation of fall-down detection algorithm based on image processing. The fall-down detection algorithm separates objects by using background subtraction and binarization after grayscale conversion of the input image acquired by the camera, and recognizes the human body by using labeling operation. The recognized human body can be monitored on the display image, and an alarm is generated when fall-down is detected. By using computer simulation, the proposed algorithm has shown a detection rate of 90%. We verify the feasibility of the proposed system by verifying the function by using the prototype test implemented on the DSP image processing board.
영상은 복잡한 객체들의 집합으로 이루어져 있기 때문에 영상에 포함된 객체를 분리하는 일은 컴퓨터 비전이나 인식 등 많은 분야에서 중요시 된다. 영상 처리 측면에서 객체를 분할하기 위해서 색상, 모양, 질감, 움직임 등 다양한 기법들이 이용되고 있다. 본 논문에서는 정확한 색상의 비교를 위해서 CIE 색상 모델을 이용하고 있으며 이것을 기반으로 객체를 추출하고 있다. 그리고 추출된 객체의 해석과 검증을 위해서 모양 기반의 분석법을 이용하고 있다. 본 논문에서는 Pan/Tilt 카메라의 타겟팅(Targeting)과 포커싱(Focusing)을 위해 영상 내에 포함되어진 객체를 검출하기 위한 방법론을 제안하고자 한다. 객체를 인식하기 위해 CIE 색상 모델을 이용한 색상 매칭 기법을 제안하고 있다. 색상의 분포를 파악하기 위해서 CIE 모델이 생성해내는 Lab 블록을 통계적인 방법으로 분석한다. 그리고 분석된 결과는 CIE 블록 매칭(Bock Matching) 기법의 기준이 되며 이것을 이용해서 후보 객체 영역(Candidate Object Area)을 추출하게 된다. 추출된 후보 객체 영역을 검증하기 위해서 모멘트를 이용한 모양 기반의 분석을 활용하고 있다.
Journal of Korea Society of Industrial Information Systems
/
v.23
no.1
/
pp.13-21
/
2018
AGVS (Automated Guided Vehicle System) is a core technology of logistics automation which automatically moves specific objects or goods within a certain work space. Conventional AGVS generally requires the in-door localization system and each AGV equips expensive sensors such as laser, magnetic, inertial sensors for the route recognition and automatic navigation. thus the high installation cost is inevitable and there are many restrictions on route(path) modification or expansion. To address this issue, in this paper, we propose a cost-effective and scalable AGV based on a light-weight pattern recognition technique. The proposed pattern recognition technology not only enables autonomous driving by recognizing the route(path), but also provides a technique for figuring out the loc ation of AGV itself by recognizing the simple patterns(bar-code like) installed on the route. This significantly reduces the cost of implementing AGVS as well as benefiting from route modification and expansion. In order to verify the effectiveness of the proposed technique, we first implement a pattern recognition algorithm on a light-weight MCU(Micro Control Unit), and then verify the results by implementing an MCU_controlled AGV prototype.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.