• Title/Summary/Keyword: 카메라 기반 인식

Search Result 700, Processing Time 0.027 seconds

Gait-based Human Identification System using Eigenfeature Regularization and Extraction (고유특징 정규화 및 추출 기법을 이용한 걸음걸이 바이오 정보 기반 사용자 인식 시스템)

  • Lee, Byung-Yun;Hong, Sung-Jun;Lee, Hee-Sung;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2011
  • In this paper, we propose a gait-based human identification system using eigenfeature regularization and extraction (ERE). First, a gait feature for human identification which is called gait energy image (GEI) is generated from walking sequences acquired from a camera sensor. In training phase, regularized transformation matrix is obtained by applying ERE to the gallery GEI dataset, and the gallery GEI dataset is projected onto the eigenspace to obtain galley features. In testing phase, the probe GEI dataset is projected onto the eigenspace created in training phase and determine the identity by using a nearest neighbor classifier. Experiments are carried out on the CASIA gait dataset A to evaluate the performance of the proposed system. Experimental results show that the proposed system is better than previous works in terms of correct classification rate.

A Framework of Recognition and Tracking for Underwater Objects based on Sonar Images : Part 2. Design and Implementation of Realtime Framework using Probabilistic Candidate Selection (소나 영상 기반의 수중 물체 인식과 추종을 위한 구조 : Part 2. 확률적 후보 선택을 통한 실시간 프레임워크의 설계 및 구현)

  • Lee, Yeongjun;Kim, Tae Gyun;Lee, Jihong;Choi, Hyun-Taek
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.164-173
    • /
    • 2014
  • In underwater robotics, vision would be a key element for recognition in underwater environments. However, due to turbidity an underwater optical camera is rarely available. An underwater imaging sonar, as an alternative, delivers low quality sonar images which are not stable and accurate enough to find out natural objects by image processing. For this, artificial landmarks based on the characteristics of ultrasonic waves and their recognition method by a shape matrix transformation were proposed and were proven in Part 1. But, this is not working properly in undulating and dynamically noisy sea-bottom. To solve this, we propose a framework providing a selection phase of likelihood candidates, a selection phase for final candidates, recognition phase and tracking phase in sequence images, where a particle filter based selection mechanism to eliminate fake candidates and a mean shift based tracking algorithm are also proposed. All 4 steps are running in parallel and real-time processing. The proposed framework is flexible to add and to modify internal algorithms. A pool test and sea trial are carried out to prove the performance, and detail analysis of experimental results are done. Information is obtained from tracking phase such as relative distance, bearing will be expected to be used for control and navigation of underwater robots.

Smooth Haptic Interaction Methods in Augmented Reality Haptics (증강 현실에서의 부드러운 촉각 상호작용 방법)

  • Lee, Beom-Chan;Hwang, Sun-Uk;Kim, Hyun-Gon;Lee, Yong-Gu;Ryu, Je-Ha
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.2072-2072
    • /
    • 2009
  • 최근 연구들에서, 증강 현실(Augmented Reality; AR) 환경에서의 촉각 상호작용에 대한 가능성이 논의되었다. 비젼 기반의 트래킹을 기초로 한 증강 현실 기술은 미리 정의된 2차원 마커(marker)를 이용하여, 카메라로부터 획득된 실시간 영상 위에 가상 물체를 증강한다. 그러나, 카메라로부터 획득된 데이터는 몇몇 오차 요인들, 예를 들어 마커의 위치를 인식하는데 나타나는 오차, 카메라 안에 존재하는 센서 잡음 등으로 인해서 마커 잡음(마커를 인식하면서 나타나는 잡음)이 불가결하게 발생하게 된다. 이러한 이유로 인해서, 사용자가 한 손에는 마커를, 다른 한 손으로는 촉감 장치를 이용하여, 마커에 증강된 물체를 만질 때, 마커 잡음은 힘의 떨림(force trembling)을 발생시킨다. 심지어, 이러한 현상은 정지된 마커에 증강된, 마커가 움직이지 않는 상황에서도 발생한다. 게다가, 마커 위에 증강된 물체가 약간 빠른 속도로 이동하게 될 경우, 측정된 이동 거리는 연속적인 프레임(frame)들 간의 불연속적일 수 있다. 만약 사용자가, 대략 30Hz로 위치와 방향이 갱신되는 가상물체를 촉각적으로 상호작용하려 한다면, 계산되는 반력은 급작스런 힘의 변화를 생성하게 될 수도 있다. 이러한 현상을 극복하기 위해서, 마커 잡음을 최소화하기 위해서 정적 임계값(constant threshold)을 이용할 뿐만 아니라, 보간법을 같이 사용한 방법이 있었다. 하지만, 이러한 방법은 정적 임계값을 이용하고, 영상 프레임 갱신 속도와(video frame rate)와 촉각 프레임 갱신 속도가 일정하다는 가정을 사용하였기 때문에, 여전히 힘의 불연속적인 발생이 나타난다. 따라서, 이 논문에서는 두 가지 방법을 이용하여 증강 현실 내에서, 발생할 수 있는 힘의 불연속적인 변화를 보정하는 두 가지 방법, 잡음 제거를 위한 확장된 칼만 필터(Extend Kalman Filter)와 영상과 촉각 갱신 속도 차이에 따른 갑작스런 힘의 변화를 제거하기 위한 적응적 외삽법(Adaptive Extrapolation method)을 제안한다.

  • PDF

Robust Human Silhouette Extraction Using Graph Cuts (그래프 컷을 이용한 강인한 인체 실루엣 추출)

  • Ahn, Jung-Ho;Kim, Kil-Cheon;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.52-58
    • /
    • 2007
  • In this paper we propose a new robust method to extract accurate human silhouettes indoors with active stereo camera. A prime application is for gesture recognition of mobile robots. The segmentation of distant moving objects includes many problems such as low resolution, shadows, poor stereo matching information and instabilities of the object and background color distributions. There are many object segmentation methods based on color or stereo information but they alone are prone to failure. Here efficient color, stereo and image segmentation methods are fused to infer object and background areas of high confidence. Then the inferred areas are incorporated in graph cut to make human silhouette extraction robust and accurate. Some experimental results are presented with image sequences taken using pan-tilt stereo camera. Our proposed algorithms are evaluated with respect to ground truth data and proved to outperform some methods based on either color/stereo or color/contrast alone.

A Single Camera based Method for Cubing Rectangular Parallelepiped Objects (한대의 카메라에 기반한 직육면체의 부피 계측 방법)

  • Won, Jong-Won;Chung, Yun-Su;Kim, Woo-Seob;You, Kwang-Hun;Lee, Yong-Joon;Park, Kil-Houm
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.5
    • /
    • pp.562-573
    • /
    • 2002
  • In this paper, we propose a method for measuring the volume of packages for the efficient handling of the packages. Using the geometrical characteristics of the rectangular parallelepiped type objects, the method measures the volume of packages with one camera only in real time. In preprocessing of volume measurement, the method extracts outer lines of the object and then crossing points of the lines as feature points or vertexes. From these cross points(-feature points-), the volume of the package is calculated. Compared to the direct feature extraction, the proposed method shows especially the blurring robust result by using the line for feature extraction. Additionally, the method can get the stable result by considering object's direction. From experimental results, it is demonstrated that this method is very effective for the real time volume measurement of the rectangular parallelepiped.

Anomaly Detection Method Based on Trajectory Classification in Surveillance Systems (감시 시스템에서 궤적 분류를 이용한 이상 탐지 방법)

  • Jeonghun Seo;Jiin Hwang;Pal Abhishek;Haeun Lee;Daesik Ko;Seokil Song
    • Journal of Platform Technology
    • /
    • v.12 no.3
    • /
    • pp.62-70
    • /
    • 2024
  • Recent surveillance systems employ multiple sensors, such as cameras and radars, to enhance the accuracy of intrusion detection. However, object recognition through camera (RGB, Thermal) sensors may not always be accurate during nighttime, in adverse weather conditions, or when the intruder is camouflaged. In such situations, it is possible to detect intruders by utilizing the trajectories of objects extracted from camera or radar sensors. This paper proposes a method to detect intruders using only trajectory information in environments where object recognition is challenging. The proposed method involves training an LSTM-Attention based trajectory classification model using normal and abnormal (intrusion, loitering) trajectory data of animals and humans. This model is then used to identify abnormal human trajectories and perform intrusion detection. Finally, the validity of the proposed method is demonstrated through experiments using real data.

  • PDF

Color-Histogram Descriptor for Augmented Reality on Non-Textured Objects (텍스쳐가 없는 환경에서 증강현실을 구현하기 위한 색상 히스토그램 지역 서술자)

  • Kim, Kang-Soo;Park, Jung-Sik;Seo, Byung-Kuk;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.201-204
    • /
    • 2010
  • 물체 인식 및 추적 기술은 기계가 영상 정보를 기반으로 주변을 인지하고 정황을 파악하는 컴퓨터 비전 분야의 매우 중요한 연구 영역 중 하나이다. 현재까지 이러한 물체 인식/추적에 대한 다양한 연구들이 있어 왔고, 최근 증강현실에 대한 높은 관심을 바탕으로 증강현실을 위한 영상 정보 기반의 정확하고 정교한 추적 기술에 대한 관심 또한 매우 높아졌다. 본 논문에서는 텍스쳐가 없는 단색의 블록에 대해 증강현실을 실현하기 위한 물체 추적 방식을 제안한다. 제안하는 방식은 다수의 블록들을 조합하여 구성하고, 이 조합으로부터 추출한 특징점에 색상 정보 기반의 지역 서술자를 정의함으로써 사전에 정의된 서술자와 의 비교를 통해 물체를 추적하는 방식이다. 제안된 추적 방식은 사전에 기준이 되는 지역 서술자를 정의함에 있어서 기준 영상에 다양한 어파인 변환을 적용함으로써 카메라와 대상물과의 각도가 큰 입력 영상에 대해서도 추적에 실패하지 않는다. 실험을 통해 제안된 방식을 집 모양으로 구성한 블록 조합에 적용하여 3차원 가상 콘텐츠를 증강시켜 봄으로써 제안된 방식의 유용성을 확인하였다. 제안된 방식은 텍스쳐가 없는 환경에서 사용자의 상호작용으로 텍스쳐를 구성하고 이를 추적하는 방식으로 향후 아이들을 위한 교육 프로그램, 모바일 기기에서의 응용 프로그램 등으로 적용 가능하다.

  • PDF

Implementation of fall-down detection algorithm based on Image Processing (영상처리 기반 낙상 감지 알고리즘의 구현)

  • Kim, Seon-Gi;Ahn, Jong-Soo;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.56-60
    • /
    • 2017
  • This paper describes the design and implementation of fall-down detection algorithm based on image processing. The fall-down detection algorithm separates objects by using background subtraction and binarization after grayscale conversion of the input image acquired by the camera, and recognizes the human body by using labeling operation. The recognized human body can be monitored on the display image, and an alarm is generated when fall-down is detected. By using computer simulation, the proposed algorithm has shown a detection rate of 90%. We verify the feasibility of the proposed system by verifying the function by using the prototype test implemented on the DSP image processing board.

Object Detection & Targeting with Lab Block Matching (Lab 블록 매칭을 이용한 객체 탐색 및 타겟팅)

  • Lee, Jung-a;Choi, Chul;Choi, Young-Kwan;Park, Chang-Choon
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.727-730
    • /
    • 2004
  • 영상은 복잡한 객체들의 집합으로 이루어져 있기 때문에 영상에 포함된 객체를 분리하는 일은 컴퓨터 비전이나 인식 등 많은 분야에서 중요시 된다. 영상 처리 측면에서 객체를 분할하기 위해서 색상, 모양, 질감, 움직임 등 다양한 기법들이 이용되고 있다. 본 논문에서는 정확한 색상의 비교를 위해서 CIE 색상 모델을 이용하고 있으며 이것을 기반으로 객체를 추출하고 있다. 그리고 추출된 객체의 해석과 검증을 위해서 모양 기반의 분석법을 이용하고 있다. 본 논문에서는 Pan/Tilt 카메라의 타겟팅(Targeting)과 포커싱(Focusing)을 위해 영상 내에 포함되어진 객체를 검출하기 위한 방법론을 제안하고자 한다. 객체를 인식하기 위해 CIE 색상 모델을 이용한 색상 매칭 기법을 제안하고 있다. 색상의 분포를 파악하기 위해서 CIE 모델이 생성해내는 Lab 블록을 통계적인 방법으로 분석한다. 그리고 분석된 결과는 CIE 블록 매칭(Bock Matching) 기법의 기준이 되며 이것을 이용해서 후보 객체 영역(Candidate Object Area)을 추출하게 된다. 추출된 후보 객체 영역을 검증하기 위해서 모멘트를 이용한 모양 기반의 분석을 활용하고 있다.

  • PDF

Implementation of Pattern Recognition Algorithm Using Line Scan Camera for Recognition of Path and Location of AGV (무인운반차(AGV)의 주행경로 및 위치인식을 위한 라인스캔카메라를 이용한 패턴인식 알고리즘 구현)

  • Kim, Soo Hyun;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2018
  • AGVS (Automated Guided Vehicle System) is a core technology of logistics automation which automatically moves specific objects or goods within a certain work space. Conventional AGVS generally requires the in-door localization system and each AGV equips expensive sensors such as laser, magnetic, inertial sensors for the route recognition and automatic navigation. thus the high installation cost is inevitable and there are many restrictions on route(path) modification or expansion. To address this issue, in this paper, we propose a cost-effective and scalable AGV based on a light-weight pattern recognition technique. The proposed pattern recognition technology not only enables autonomous driving by recognizing the route(path), but also provides a technique for figuring out the loc ation of AGV itself by recognizing the simple patterns(bar-code like) installed on the route. This significantly reduces the cost of implementing AGVS as well as benefiting from route modification and expansion. In order to verify the effectiveness of the proposed technique, we first implement a pattern recognition algorithm on a light-weight MCU(Micro Control Unit), and then verify the results by implementing an MCU_controlled AGV prototype.