A Single Camera based Method for Cubing Rectangular Parallelepiped Objects

한대의 카메라에 기반한 직육면체의 부피 계측 방법

  • Won, Jong-Won (Dept.of Electronics Engineering, Kyungpook National University) ;
  • Chung, Yun-Su (Electronics and Telecommunications Research Institute) ;
  • Kim, Woo-Seob (Dept.of Electronics Engineering, Kyungpook National University) ;
  • You, Kwang-Hun (Dept.of Electronics Engineering, Kyungpook National University) ;
  • Lee, Yong-Joon (Electronics and Telecommunications Research Institute) ;
  • Park, Kil-Houm (Dept.of Electronics Engineering, Kyungpook National University)
  • Published : 2002.10.01

Abstract

In this paper, we propose a method for measuring the volume of packages for the efficient handling of the packages. Using the geometrical characteristics of the rectangular parallelepiped type objects, the method measures the volume of packages with one camera only in real time. In preprocessing of volume measurement, the method extracts outer lines of the object and then crossing points of the lines as feature points or vertexes. From these cross points(-feature points-), the volume of the package is calculated. Compared to the direct feature extraction, the proposed method shows especially the blurring robust result by using the line for feature extraction. Additionally, the method can get the stable result by considering object's direction. From experimental results, it is demonstrated that this method is very effective for the real time volume measurement of the rectangular parallelepiped.

본 논문에서는 소포 및 택배와 같은 패키지(package)의 효과적인 취급(handling)을 위한 직육면체의 부피 계측 방법을 제안한다. 제안된 방법은 한대의 카메라와 직육면체의 특성을 이용하여 실시간으로 부피 계측을 수행한다. 부피 계측을 위한 전처리 과정에서, 제안된 방법은 직육면체의 외곽 선분 정보를 검출하고, 이러한 선분들의 교차점을 3D 물체의 꼭지점으로 추출/인식하여, 물체의 부피를 계산한다. 제안된 방법은 선분 정보를 이용하여 꼭지점을 추출함으로써, 꼭지점을 직접 추출하는 경우에 비하여 카메라의 블러링 효과에 비교적 강인한 특성을 나타내며, 물체의 방향을 고려함으로써 견실한 부피계측 결과를 나타낸다. 실험의 결과를 통하여 제안된 방법이 직육면체 물체의 실시간 부피 계산에 효과적으로 사용될 수 있음이 보여진다.

Keywords

References

  1. Postal Technology International, pp.170-172, UK & International Press, 1999
  2. http://www.cargoscan.com/cs5200.htm
  3. Albert Wurz, John E. Romaine and David L. Martin, 'Dimensioning System,' U.S. Patent 5661561, Aug. 26, 1997
  4. Postal Technology International, pp, 190-193, UK & International Press, 2000
  5. G. Xu and Z. Zhang, Epipolar Geometry in Stereo, Motion and Object Recognition , Kluwer Academic Publishers, 1996
  6. 정윤수, 원종운, 김동호, 김진석 'CCD카메라에 기반한 3D 자동 물량 산출 시스템', 제16회 산 학 연 멀티미디어 산업기술 학술대회 학술논문집, pp.109-114, 2000
  7. W. B. Culbertson, T. Malzbender, and G. Slabaugh, 'Generalized Voxel Coloring,' Proc. ICCV Workshop on Vision Algorithms, Theory and Practice, 1999
  8. P. Eisert, E. Steinbach, and B. Girod, 'Multi-Hypothesis, Volumetric Reconstruction of 3-D Objects from Multiple Calibrated Camera Views,' Proc. International Conference on Acoustic, Speech, and Signal Processing, pp.3509-3512, 1999 https://doi.org/10.1109/ICASSP.1999.757599
  9. S. Seitz and C. Dyer, 'Photorealistic Scene Reconstruction by Voxel Coloring,' Proc. Computer Vision and Pattern Recognition, vol, 35, pp.151-173, 1999
  10. P. Eisert, E. Steinbach, and B. Girod, 'Automatic Reconstruction of Stationary 3-D Objects from Multiple Uncalibrated Camera Views', Circuits and Systems for Video Technology, IEEE Transactions on , Vol. 10, pp.261-277, 2000 https://doi.org/10.1109/76.825726
  11. Korsten, M.J. Houkes, Z. 'Parametric descriptions and estimation, a synergetic approach to resolving shape from shading and motion', Image Processing and its Applications, Third International Conference on , Page(s): 5 -9, 1989
  12. Cho S.Y. Chow TWS, 'Neural computation approach for developing a 3-D shape reconstruction model,' IEEE Transactions on Neural Networks, Vol 12 N.5, pp 1204-1214, 2001 https://doi.org/10.1109/72.950148
  13. Qiang Ji, Haralick, R.M., 'Corner detection with covariance propagation,' Computer Vision and Pattern Recognition, Proceedings. pp.362-367, 1997 https://doi.org/10.1109/CVPR.1997.609350
  14. Mokhtarian. F., Suomela. R., 'Robust image corner detection through curvature scale space', IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20 no. 12 pp.1376-1381 Dec. 1998 https://doi.org/10.1109/34.735812
  15. Jiann-Shu Lee, Yung-Nien Sun, Chin-Hsing Chen 'Multi scale comer detection by using wavelet transform,' IEEE Transactions on Image Processing, vol.4, no.1, pp.100-104, 1995 https://doi.org/10.1109/83.350810
  16. Y. S. Chen and W. H. Hsu, 'A modified fast parallel algorithm for thinning digital patterns,' Pattern Recognition Letters, vol. 7, no. 2, pp. 99- 106, 1988 https://doi.org/10.1016/0167-8655(88)90124-9
  17. R. Jain, R. Kasturi and B. G. Schunck, Machine Vision, McGraw Hill, 1995
  18. A. Jonk and A. W. M. Smeulders, 'An axiomatic approach to clustering line-segments,' Proceedings of the Third ICDAR, pp. 386-389, 1995 https://doi.org/10.1109/ICDAR.1995.599019