• Title/Summary/Keyword: 침투 및 진단

Search Result 151, Processing Time 0.027 seconds

Resistance of Chloride Penetration into High Strength Concrete Containing Mineral Admixtures according to Curing Conditions (광물질혼화재 혼합 고강도콘크리트의 양생조건에 따른 염화물이온 침투저항성)

  • Moon, Han-Young;Kim, Byoung-Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.185-194
    • /
    • 2004
  • In recent years, construction company makes inroads into the world construction market, and receives the order of extra-large concrete structure under marine environment in south-east asia specially. At this point of time, to enhance the quality of concrete, we research the High Strength Concrete (HSC) containing mineral admixtures. In this study, therefore, HSC with various combination of ordinary portland cement(OPC), blast-furnace slag(SG), silica fume(SF), and expansion admixture(SS) are cured 23 and $35^{\circ}C$ considering the site weather, and are cured in water for 3, 7 or 56 days respectively. Test results show that the HSC cured at $35^{\circ}C$ gains higher early-age strength but eventually gains lower later-age strength compare with the HSC cured at $23^{\circ}C$. Especially, HSC with combination of OPC+SG+SF+SS or OPC+SG+SF show very excellent resistance of chloride penetration. The permeability of HSC was therefore enhanced as because of containing the proper content of SG, SF, and SS and making dense micro-structure of HSC.

A Study on Watertightness Improvement of Hybrid Method Using Polyvinyl Acetate(PVAc) (폴리비닐아세테이트(PVAc)를 이용한 복합공법의 수밀성능 향상에 관한 연구)

  • Ryou, Jae Suk;Song, Il Hyun;Lee, Yong Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.18-24
    • /
    • 2012
  • In this study, hybrid method using polyvinyl acetate (PVAc) which has a strong adhesion and flexibility in which acrylic copolymer chemical-reaction reacts with cement, and is eco-friendly, is to improve the watertightness. The hybrid method is applied applied primarily waterproof stuff comprising silicate system and secondary mortar mixed with PVAc on the concrete surface. And then, in order to evaluate the performance, the properties of bond strength and amount of water absorption were measured. Based on the above experiments, mock-up specimens for field application were fabricated, and then the properties were evaluated as laboratory experiments. As the results, specimens cast from hybrid method using PVAc showed the best results on watertightness and bond strength. And also, with respect to experiment of mock-up specimens, the properties were in agreement with laboratory results. Especially, it could know that PVAc has strengthening effect from the results of the compressive strength. Due to outstanding results of carbonation depth and resistance to chloride ion penetration, it may be applied in weak areas such as underground and marine structures.

Properties of Epoxy-Modified Mortars with Alkali Activators and Ground Granulated Blast Furnace Slag (알칼리자극제 및 고로슬래그미분말을 병용한 에폭시수지 혼입 폴리머 시멘트 모르타르의 성질)

  • Kim, Wan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • The purpose of this study is to investigate the properties of hardener-free epoxy-modified mortars(EMMs) using ground granulated blast furnace slag(GGBFS) and alkali activators. The hardener-free EMMs with a GGBFS content of 20% using 4 types of alkali activators were prepared with various polymer-binder ratios, and tested for strengths, water absorption, carbonation depth, chloride ion and H2SO4 penetration depth. The conclusions obtained from the test results are summarized as follows: The compressive strength of the EMMs with a GGBFS content of 20% attains a maximum at a polymer-binder ratio of 10%. The flexural strength of the hardener-free EMMs using Ca(OH)2 as a alkali activator is improved with increasing polymer-binder ratios. However, the flexural strength of the EMMs using NaCO3, Na2SO4 and Li2CO3 is gradually decreased with increasing polymer-binder ratios. Regardless of the type of alkali activator, the water absorption, chloride ion penetration and carbonation depth are remarkably decreased with increasing polymer-binder ratios due to the epoxy film formed in the EMMs. The H2SO4 penetration depth of the hardener-free EMMs with a GGBFS content of 20% is gradually increased with increasing polymer-binder ratio. In this study, the properties of hardener-free EMMs using Ca(OH)2 as a alkali activator are more excellent than those of other alkali activators.

Chemical Resistance of Low Heat Cement Concrete Used in Wastewater Treatment Structures Built on Reclaimed Land (해안매립지 하수처리시설물에 적용한 저발열시멘트 콘크리트의 내화학성 평가)

  • Chung, Yongtaek;Lee, Byungjae;Kim, Yunyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.113-119
    • /
    • 2019
  • Concrete structures built on reclaimed land are combined with chemical erosion such as chlorine and sulfate ions from seawater. Chloride attack deteriorates the performance of the structure by corroding reinforcing bars. In addition, the waste water treatment structure has a problem that the concrete is deteriorated by the sulfate generated inside. Therefore, in this study, the characteristics and chemical resistance of low heat cement concrete used in wastewater treatment structures constructed on reclaimed land were evaluated. As a result of the experiment, the target slump and air content were satisfied under all the mixing conditions. The slump of low heat cement (LHC) concrete was higher than that of ordinary portland cement (OPC) concrete, while the air content of LHC concrete was smaller than that of OPC concrete with the same mix proportion. As a result of compressive strength test, OPC concrete showed higher strength at younger age compared to 28 days. In contrast, LHC concrete exhibited higher strength than OPC concrete at the age of 56 days. As a result of chlorine ion penetration tests, LHC-B concrete showed chlorine ion penetration resistance performance of the "very low" level at the age of 56 days. As a result of chemical resistance evaluation, when the LHC concrete is applied without epoxy treatment, chemical resistance is improved by about 18% compared to OPC concrete. In testing chemical resistance, the epoxy coated concrete exhibited less than 5% strength reduction when compared to sound concrete.

Evaluation of Compressive Strength and Freeze-thaw Resistance Properties of Concrete using Superabsorbent Polymer (고 흡수성 폴리머를 혼입한 콘크리트의 압축 강도 및 동결융해 저항성 평가)

  • Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.86-94
    • /
    • 2020
  • When the Superabsorbent Polymer (SAP) is added into concrete, the slump decreases rapidly, deteriorating the workability, the internal curing effect can be obtained through the water absorption and discharge process, and the internal voids of the concrete are increased. In this study, the effects of internal curing and voids were evaluated by evaluating the compressive strength, freeze-thaw resistance, and chloride penetration resistance of SAP-adding concrete that secured workability using a water reducing agent. Also, the internal curing effect of SAP was evaluated by dividing the curing conditions of concrete into water curing and sealed curing. From the result, as the SAP adding ratio increased, the amount of water reducing agent increased, and as for the compressive strength, the SAP adding ratio of 1.5% showed the greatest compressive strength. In particular, in the case of sealed curing showed higher compressive strength than the water curing. It is considered that the compressive strength increased due to the reduction of the effective water-cement ratio and the internal curing effect. Adding 1.0~1.5% of SAP improved the freeze-thaw resistance similar to the case of adding the AE agent, and the addition of more than 1.0% of SAP improved the chloride penetration resistance. The optimal adding ratio of SAP is 1.5%, and the adding ratio of 2.0% or more adversely affects the compressive strength and freeze-thaw resistance.

A Study on the Development and the Practical Approach for Repair Method of RC Structures Subjected to the Chemical Attack (화학적 침식을 받은 콘크리트구조물의 보수기술 개발과 실용화연구)

  • Moon, Han-Young;Shin, Dong-Gu;Kwon, Young-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.155-162
    • /
    • 2005
  • This paper presents an invetigation into the cause of deterioration of wet surrounding RC structures subjected to checmical attacks such as sewage. The antibacterial-reforming agent is developed after determining the permeability of the RC structure. After application of the anitbacterial-reforming agent through SEM, the permeability, compressive strength properties and the micro-structure of the concrete were evaluated for durability. In addition, the antibacterial-reforming agent was combined with a protective coating for the wet surrounding RC structure and evaluated for durability. The combined effect of the antibacterial-reforming agent and the protective coating were evaluated in field tests in both sewer system and tunnel sites.

A Study of Action Research Analysis Methods Model of Backdoor Behavior based on Operating Mechanism Diagnosis (동작 메커니즘 진단을 기반으로 한 백도어(backdoor) 행동분석 방법 모델 연구)

  • Na, SangYeob;Noh, SiChoon
    • Convergence Security Journal
    • /
    • v.14 no.2
    • /
    • pp.17-24
    • /
    • 2014
  • Form of backdoor penetration attacks "trapdoor" penetration points to bypass the security features and allow direct access to the data. Backdoor without modifying the source code is available, and even code generation can also be modified after compilation. This approach by rewriting the compiler when you compile the source code to insert a specific area in the back door can be due to the use of the method. Defense operations and the basic structure of the backdoor or off depending on the nature of the damage area can be a little different way. This study is based on the diagnosis of a back door operating mechanism acting backdoor analysis methods derived. Research purposes in advance of the attack patterns of malicious code can respond in a way that is intended to be developed. If we identify the structures of backdoor and the infections patterns through the analysis, in the future we can secure the useful information about malicious behaviors corresponding to hacking attacks.

Application of Earth Natural Grouting Using Micro Cement and Inorganic material (마이크로시멘트 무기질계 그라우팅 ENG의 적용성 연구)

  • Jung, Min-Hyung;Kim, Yong-Sik;Jung, Chun-Hak;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.109-116
    • /
    • 2010
  • The Water glass grouting method has been applied frequently to penetration grouting in practice, but some problems, such as decrease of durability with the elapsed time and environmentally adverse effect, are raised recently. Hence, the Earth Natural Grouting method which uses micro cement and inorganic material is developed to overcomes those problems of the water glass grouting method, and is aimed for extensive ground injection bound. Volumetric strain test, syneresis test, unconfined compression test, triaxial permeability test, in-situ permeability test and heavy metal analysis were conducted to verify application of the ENG. As the result of tests, volumetric strain, syneresis and unconfined strength of the ENG were superior to those of the Water Glass SGR and ENG was proved to be impermeable. Also it is expected that the ENG would not have an effect on environmental pollution.

The Diffusion Property of Chloride Ion into Concrete by Electrically Accelerated Method (전기적인 촉진시험에 의한 콘크리트의 염화물이온 확산특성)

  • Bae, Ju-Seong;Park, Gook-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.138-143
    • /
    • 2010
  • Recently, as many big marine concrete structures increase, it is necessary that chloride ion diffusion coefficient of concrete shall be evaluated but it will take a long time to evaluate chloride ion diffusion coefficient of concrete. Accordingly, many test methods are suggested to evaluate chloride ion diffusion coefficient in a short period time by the promotion in electro chemical ways but the systematic study for this is insufficient. Therefore, this study evaluates chloride ion penetration and diffusion features by three representative electric promotion tests targeting for three different cements whose ingredients are different and analyzes the correlationship between them. As a result, diffusion features of chloride ion varied according to the cement ingredients and three ingredients cement in which blast furnace slag powder and fly ash are mixed in constant ratio, which shows the most excellent cement diffusion properties. For diffusion properties of chloride ion, the correlationship between test methods are good.

An Experimental Evaluation on Performance of Surface Protector for Concrete Structures (콘크리트 구조물 표면 보호재의 성능에 대한 실험적 평가)

  • Nam, Yong-Hyuk;Chung, Young-Jun;Jang, Suk-Hwan;An, Young-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.157-163
    • /
    • 2006
  • This study is on the evaluation of double surface protection method using water repellent primer and final top coat to protect concrete. Water repellent agent has been applied on the final top coat to protect concrete. However, to make up for the weakness to the ultraviolet of the water repellent, the work procedure of these protectors is done vice versa. This combination of protectors was compared with existing ones in this study. Even though the final top coat was applied on the water repellent primer, its adhesive strength met to KS F 4936-' 03 with other protectors used in this study. All surface protectors used in this study were excellent in protecting concrete. Especially, in case of applying with final top coat in conjunction with water repellent primer, the resistance against chloride ion penetration and neutralization by $CO_2$ was more efficient than other surface protectors used in this study under this given condition.