In this paper, we compared the performance of "Network Intrusion Detection System based on attack feature selection using fuzzy control language"[1] and "Intelligent Intrusion Detection System Model for attack classification using RNN"[2]. In this paper, we compare the intrusion detection performance of two techniques using KDD CUP 99 dataset. The KDD 99 dataset contains data sets for training and test data sets that can detect existing intrusions through training. There are also data that can test whether training data and the types of intrusions that are not present in the test data can be detected. We compared two papers showing good intrusion detection performance in training and test data. In the comparative paper, there is a lack of performance to detect intrusions that exist but have no existing intrusion detection capability. Among the attack types, DoS, Probe, and R2L have high detection rate using fuzzy and U2L has a high detection rate using RNN.
Recently, since the number of internet users is increasing rapidly and, by using the public hacking tools, general network users can intrude computer systems easily, the hacking problem is getting more serious. In order to prevent the intrusion, it is needed to detect the sign in advance of intrusion in a positive prevention by detecting the various foms of hackers' intrusion trials to know the vulnerability of systems. The existing network-based anomaly detection algorithms that cope with port- scanning and the network vulnerability scans have some weakness in intrusion detection. they can not detect slow scans and coordinated scans. therefore, the new concept of algorithm is needed to detect effectively the various forms of abnormal accesses for intrusion regardless of the intrusion methods. In this paper, SPAD(Session Pattern Anomaly Detector) is presented, which detects the abnormal service patterns by comparing them with the ordinary normal service patterns.
Proceedings of the Korean Information Science Society Conference
/
2004.04a
/
pp.247-249
/
2004
IDS에서 발생되는 경보의 수는 최근 인터넷 애플리케이션의 발달로 인하여 급격히 증가하고 있으며. 그로 인해 오 경보의 수도 함께 증가하고 있다. 발생된 경보들은 침입탐지 시스템의 성능저하와 alert flooding 의 원인이 된다. 따라서 이 논문에서는 다량의 경보 중에서 오 경보(False Alarm)의 발생을 감소시킬 수 있는 오 경보 분류 모델을 제안한다. 제안된 오 경보 분류 모델은 데이터 마이닝 기법들 중에서 분류 기법을 기반으로 구현되었다. 실험 을 통해서 IDS에서 발생하는 경보 중에서 정상데이터이나 공격으로 잘못 판단하여 발생하는 False Positive의 발생율이 현저히 감소됨을 확인할 수 있었다. 제안된 오 경보 분류 모델은 경보메시지 축약의 효과가 있으며 침입탐지 시스템의 탐지율을 높이는데 활용될 수 있다.
네트워크에서 발생하는 다양한 침입 중에서 서비스거부공격(DoS Attack. Denial-of-Service Attack)이란 공격자가 침입대상 시스템의 시스템 자원과 네트워크 자원을 악의적인 목적으로 소모시키기 위하여 대량의 패킷을 보냄으로써 정상 사용자로 하여금 시스템이 제공하는 서비스를 이용하지 못하도록 하는 공격을 의미한다. 기존 연구에서는 시스템과 네트워크가 수신한 패킷을 분석한 후 네트워크 세션정보를 생성하여 DoS 공격을 탐지하였다. 그러나 이 기법은 공격자가 분산서비스거부공격(DDoS Attack: Distributed DoS Attack)을 하게 되면 분산된 세션정보가 생성되기 때문에 침입을 실시간으로 탐지하기에는 부적절하다. 본 논문에서는 시스템이 가지고 있는 자윈 중에서 DDoS 공격을 밭을 때 가장 민감하게 반응하는 시스템 자원을 모니터링 함으로써 DDoS 공격을 실시간으로 탐지할 수 있는 모델을 제안한다 제안 모델은 시스템이 네트워크에서 수신한 패킷을 처리하는 과정에서 소모되는 커널 메모리 소비량을 감사자료로 이용한 네트워치기반 비정상행위탐지(networked-based anomaly detection)모델이다.
Journal of the Korea Society of Computer and Information
/
v.8
no.1
/
pp.103-113
/
2003
Program Behavior Intrusion Detection Technique analyses system calls that called by daemon program or root authority, constructs profiles. and detectes anomaly intrusions effectively. Anomaly detections using system calls are detected only anomaly processes. But this has a Problem that doesn't detect affected various Part by anomaly processes. To improve this problem, the relation among system calls of processes is represented by bayesian probability values. Application behavior profiling by Bayesian Network supports anomaly intrusion informations . This paper overcomes the Problems of various intrusion detection models we Propose effective intrusion detection technique using Bayesian Networks. we have profiled concisely normal behaviors using behavior context. And this method be able to detect new intrusions or modificated intrusions we had simulation by proposed normal behavior profiling technique using UNM data.
Journal of the Korea Academia-Industrial cooperation Society
/
v.11
no.11
/
pp.4553-4562
/
2010
With developing networks, information security is going to be important and therefore lots of intrusion detection system has been developed. Intrusion detection system has abilities to detect abnormal behavior and unknown intrusions also it can detect intrusions by using patterns studied from various penetration methods. Various algorithms are studying now such as the statistical method for detecting abnormal behavior, extracting abnormal behavior, and developing patterns that can be expected. Etc. This study using clustering of data mining and association rule analyzes detecting areas based on two models and helps design detection system which detecting abnormal behavior, unknown attack, misuse attack in a large network.
There have been large concerns about survivability defined as the capability of a system to perform a mission-critical role, in a timely manner, in the presence of attacks, failures. In particular, One of the most important core technologies required for the design of the ITS(Intrusion Tolerance System) that performs continuously minimal essential services even when the computer system is partially compromised because of intrusions is the survivability one of In included the dependability analysis of a reliability and availability etc. quantitative dependability analysis of the In. In this Paper, we applied self-healing mechanism utilizing two factors of self-healing mechanism (fault model and system response), the core technology of autonomic computing to secure the protection power of the ITS and consisted of a state transition diagram of the ITS composed of a primary server and a backup server. We also defined the survivability, availability, and downtime cost of the ITS, and then performed studies on simulation experiments and two cases of vulnerability attack. Simulation results show that intrusion tolerance capability at the initial state is more important than coping capability at the attack state in terms of the dependability enhancement.
IDS(Intrusion Detection System) evasion is a technology which uses vulnerability of IDS in order not to be detected by IDS. In this paper, at first, we classify IDS evasion technology. Second, we propose detection model of IDS evasion technology. Finally, we design and implement IDS evasion detection system with packet reassemble function.
IDS(Intrusion Detection System) evasion is a technology which uses vulnerability of IDS in order not to be detected by IDS. In this paper, at first, we classify IDS evasion technology. Second, we propose detection model of IDS evasion technology. Finally, we design and implement detection system of IDS evasion.
Proceedings of the Korean Information Science Society Conference
/
1999.10c
/
pp.306-308
/
1999
사회분야 전반이 전산화되면서 전산시스템에 대한 효과적인 침입방지와 탐지가 중요한 문제로 대두되었다. 침입행위도 정상사용행위와 마찬가지로 전산시스템 서비스를 사용하므로 호출된 서비스의 순서로 나타난다. 본 논문에서는 정상사용행위에 대한 서비스 호출순서를 모델링 한 후 사용자의 사용패턴을 정상행위와 비교해서 비정상행위(anomaly)를 탐지하는 접근방식을 사용한다. 정상 행위 모델링에는 순서정보를 통계적으로 모델링하고 펴가하는데 널리 쓰이고 있는 HMM(Hidden Markov Model)을 사용하였다. Sun사의 BSM 모듈로 얻어진 3명 사용자의 사용로그에 대하여 본 시스템을 적용한 결과, 학습되지 않은 u2r 침입에 대해 2.95%의 false-positive 오류에서 100%의 탐지율을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.