• Title/Summary/Keyword: 침입모델

Search Result 379, Processing Time 0.023 seconds

Comparison of Detection Performance of Intrusion Detection System Using Fuzzy and Artificial Neural Network (퍼지와 인공 신경망을 이용한 침입탐지시스템의 탐지 성능 비교 연구)

  • Yang, Eun-Mok;Lee, Hak-Jae;Seo, Chang-Ho
    • Journal of Digital Convergence
    • /
    • v.15 no.6
    • /
    • pp.391-398
    • /
    • 2017
  • In this paper, we compared the performance of "Network Intrusion Detection System based on attack feature selection using fuzzy control language"[1] and "Intelligent Intrusion Detection System Model for attack classification using RNN"[2]. In this paper, we compare the intrusion detection performance of two techniques using KDD CUP 99 dataset. The KDD 99 dataset contains data sets for training and test data sets that can detect existing intrusions through training. There are also data that can test whether training data and the types of intrusions that are not present in the test data can be detected. We compared two papers showing good intrusion detection performance in training and test data. In the comparative paper, there is a lack of performance to detect intrusions that exist but have no existing intrusion detection capability. Among the attack types, DoS, Probe, and R2L have high detection rate using fuzzy and U2L has a high detection rate using RNN.

Anomaly Detection Model based on Network using the Session Patterns (세션 패턴을 이용한 네트워크기반의 비정상 탐지 모델)

  • Park Soo-Jin;Choi Yong-Rak
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.719-724
    • /
    • 2004
  • Recently, since the number of internet users is increasing rapidly and, by using the public hacking tools, general network users can intrude computer systems easily, the hacking problem is getting more serious. In order to prevent the intrusion, it is needed to detect the sign in advance of intrusion in a positive prevention by detecting the various foms of hackers' intrusion trials to know the vulnerability of systems. The existing network-based anomaly detection algorithms that cope with port- scanning and the network vulnerability scans have some weakness in intrusion detection. they can not detect slow scans and coordinated scans. therefore, the new concept of algorithm is needed to detect effectively the various forms of abnormal accesses for intrusion regardless of the intrusion methods. In this paper, SPAD(Session Pattern Anomaly Detector) is presented, which detects the abnormal service patterns by comparing them with the ordinary normal service patterns.

Data Mining based Classification Model for False Alarm rate reducing of IDS (IDS의 False Alarm 발생율 감소를 위한 데이터 마이닝 기반의 분류모델)

  • 전원용;신문선;김은희;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.247-249
    • /
    • 2004
  • IDS에서 발생되는 경보의 수는 최근 인터넷 애플리케이션의 발달로 인하여 급격히 증가하고 있으며. 그로 인해 오 경보의 수도 함께 증가하고 있다. 발생된 경보들은 침입탐지 시스템의 성능저하와 alert flooding 의 원인이 된다. 따라서 이 논문에서는 다량의 경보 중에서 오 경보(False Alarm)의 발생을 감소시킬 수 있는 오 경보 분류 모델을 제안한다. 제안된 오 경보 분류 모델은 데이터 마이닝 기법들 중에서 분류 기법을 기반으로 구현되었다. 실험 을 통해서 IDS에서 발생하는 경보 중에서 정상데이터이나 공격으로 잘못 판단하여 발생하는 False Positive의 발생율이 현저히 감소됨을 확인할 수 있었다. 제안된 오 경보 분류 모델은 경보메시지 축약의 효과가 있으며 침입탐지 시스템의 탐지율을 높이는데 활용될 수 있다.

  • PDF

DDoS Attack Detection Scheme based on the System Resource Consumption Rate in Linux Systems (리눅스시스템에서 서비스자원소비율을 이용한 분산서비스거부공격 탐지 기법)

  • Ko, Kwang-Sun;Kang, Yong-Hyeog;Eom, Young-Ik
    • Annual Conference of KIPS
    • /
    • 2003.05c
    • /
    • pp.2041-2044
    • /
    • 2003
  • 네트워크에서 발생하는 다양한 침입 중에서 서비스거부공격(DoS Attack. Denial-of-Service Attack)이란 공격자가 침입대상 시스템의 시스템 자원과 네트워크 자원을 악의적인 목적으로 소모시키기 위하여 대량의 패킷을 보냄으로써 정상 사용자로 하여금 시스템이 제공하는 서비스를 이용하지 못하도록 하는 공격을 의미한다. 기존 연구에서는 시스템과 네트워크가 수신한 패킷을 분석한 후 네트워크 세션정보를 생성하여 DoS 공격을 탐지하였다. 그러나 이 기법은 공격자가 분산서비스거부공격(DDoS Attack: Distributed DoS Attack)을 하게 되면 분산된 세션정보가 생성되기 때문에 침입을 실시간으로 탐지하기에는 부적절하다. 본 논문에서는 시스템이 가지고 있는 자윈 중에서 DDoS 공격을 밭을 때 가장 민감하게 반응하는 시스템 자원을 모니터링 함으로써 DDoS 공격을 실시간으로 탐지할 수 있는 모델을 제안한다 제안 모델은 시스템이 네트워크에서 수신한 패킷을 처리하는 과정에서 소모되는 커널 메모리 소비량을 감사자료로 이용한 네트워치기반 비정상행위탐지(networked-based anomaly detection)모델이다.

  • PDF

Normal Behavior Profiling based on Bayesian Network for Anomaly Intrusion Detection (이상 침입 탐지를 위한 베이지안 네트워크 기반의 정상행위 프로파일링)

  • 차병래;박경우;서재현
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.1
    • /
    • pp.103-113
    • /
    • 2003
  • Program Behavior Intrusion Detection Technique analyses system calls that called by daemon program or root authority, constructs profiles. and detectes anomaly intrusions effectively. Anomaly detections using system calls are detected only anomaly processes. But this has a Problem that doesn't detect affected various Part by anomaly processes. To improve this problem, the relation among system calls of processes is represented by bayesian probability values. Application behavior profiling by Bayesian Network supports anomaly intrusion informations . This paper overcomes the Problems of various intrusion detection models we Propose effective intrusion detection technique using Bayesian Networks. we have profiled concisely normal behaviors using behavior context. And this method be able to detect new intrusions or modificated intrusions we had simulation by proposed normal behavior profiling technique using UNM data.

  • PDF

Implementation of abnormal behavior detection Algorithm and Optimizing the performance of Algorithm (비정상행위 탐지 알고리즘 구현 및 성능 최적화 방안)

  • Shin, Dae-Cheol;Kim, Hong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4553-4562
    • /
    • 2010
  • With developing networks, information security is going to be important and therefore lots of intrusion detection system has been developed. Intrusion detection system has abilities to detect abnormal behavior and unknown intrusions also it can detect intrusions by using patterns studied from various penetration methods. Various algorithms are studying now such as the statistical method for detecting abnormal behavior, extracting abnormal behavior, and developing patterns that can be expected. Etc. This study using clustering of data mining and association rule analyzes detecting areas based on two models and helps design detection system which detecting abnormal behavior, unknown attack, misuse attack in a large network.

A Survivability Model of an Intrusion Tolerance System (침입감내시스템의 생존성 모델)

  • Park, Bum-Joo;Park, Kie-Jin;Kim, Sung-Soo
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.395-404
    • /
    • 2005
  • There have been large concerns about survivability defined as the capability of a system to perform a mission-critical role, in a timely manner, in the presence of attacks, failures. In particular, One of the most important core technologies required for the design of the ITS(Intrusion Tolerance System) that performs continuously minimal essential services even when the computer system is partially compromised because of intrusions is the survivability one of In included the dependability analysis of a reliability and availability etc. quantitative dependability analysis of the In. In this Paper, we applied self-healing mechanism utilizing two factors of self-healing mechanism (fault model and system response), the core technology of autonomic computing to secure the protection power of the ITS and consisted of a state transition diagram of the ITS composed of a primary server and a backup server. We also defined the survivability, availability, and downtime cost of the ITS, and then performed studies on simulation experiments and two cases of vulnerability attack. Simulation results show that intrusion tolerance capability at the initial state is more important than coping capability at the attack state in terms of the dependability enhancement.

IDS Evasion Detection System with Packet Reassemble Funtion (패킷 재조립 기능을 가진 IDS 우회공격 탐지 시스템)

  • Youk Sang-Jo;Park Myung-Ho;Lee Geuk
    • Journal of Digital Contents Society
    • /
    • v.4 no.1
    • /
    • pp.101-113
    • /
    • 2003
  • IDS(Intrusion Detection System) evasion is a technology which uses vulnerability of IDS in order not to be detected by IDS. In this paper, at first, we classify IDS evasion technology. Second, we propose detection model of IDS evasion technology. Finally, we design and implement IDS evasion detection system with packet reassemble function.

  • PDF

A Design and Implementation of Detection System against Evasional Attack to IDS (IDS 우회공격 탐지 시스템 설계 및 구현)

  • Gil, Min-Wook;Cha, Jun-Nam;Lee, Geuk
    • Convergence Security Journal
    • /
    • v.2 no.2
    • /
    • pp.165-177
    • /
    • 2002
  • IDS(Intrusion Detection System) evasion is a technology which uses vulnerability of IDS in order not to be detected by IDS. In this paper, at first, we classify IDS evasion technology. Second, we propose detection model of IDS evasion technology. Finally, we design and implement detection system of IDS evasion.

  • PDF

An Intrusion Detection System with Temporal Event Modeling based on Hidden Markov Model (은닉 마르코프 모델에 기반한 정상행위의 순서적 이벤트 모델링을 통한 침입탐지 시스템)

  • 최종호;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10c
    • /
    • pp.306-308
    • /
    • 1999
  • 사회분야 전반이 전산화되면서 전산시스템에 대한 효과적인 침입방지와 탐지가 중요한 문제로 대두되었다. 침입행위도 정상사용행위와 마찬가지로 전산시스템 서비스를 사용하므로 호출된 서비스의 순서로 나타난다. 본 논문에서는 정상사용행위에 대한 서비스 호출순서를 모델링 한 후 사용자의 사용패턴을 정상행위와 비교해서 비정상행위(anomaly)를 탐지하는 접근방식을 사용한다. 정상 행위 모델링에는 순서정보를 통계적으로 모델링하고 펴가하는데 널리 쓰이고 있는 HMM(Hidden Markov Model)을 사용하였다. Sun사의 BSM 모듈로 얻어진 3명 사용자의 사용로그에 대하여 본 시스템을 적용한 결과, 학습되지 않은 u2r 침입에 대해 2.95%의 false-positive 오류에서 100%의 탐지율을 보여주었다.

  • PDF