Proceedings of the Korean Information Science Society Conference (한국정보과학회:학술대회논문집)
- 2004.04a
- /
- Pages.247-249
- /
- 2004
- /
- 1598-5164(pISSN)
Data Mining based Classification Model for False Alarm rate reducing of IDS
IDS의 False Alarm 발생율 감소를 위한 데이터 마이닝 기반의 분류모델
Abstract
IDS에서 발생되는 경보의 수는 최근 인터넷 애플리케이션의 발달로 인하여 급격히 증가하고 있으며. 그로 인해 오 경보의 수도 함께 증가하고 있다. 발생된 경보들은 침입탐지 시스템의 성능저하와 alert flooding 의 원인이 된다. 따라서 이 논문에서는 다량의 경보 중에서 오 경보(False Alarm)의 발생을 감소시킬 수 있는 오 경보 분류 모델을 제안한다. 제안된 오 경보 분류 모델은 데이터 마이닝 기법들 중에서 분류 기법을 기반으로 구현되었다. 실험 을 통해서 IDS에서 발생하는 경보 중에서 정상데이터이나 공격으로 잘못 판단하여 발생하는 False Positive의 발생율이 현저히 감소됨을 확인할 수 있었다. 제안된 오 경보 분류 모델은 경보메시지 축약의 효과가 있으며 침입탐지 시스템의 탐지율을 높이는데 활용될 수 있다.
Keywords