• Title/Summary/Keyword: 축대칭유동

Search Result 178, Processing Time 0.025 seconds

A Study on the heat transfer characteristics of a normal axisymmetric under-expanded impinging jet on a surface (수직 축대칭 과소팽창 충돌 제트의 표면 열전달 특성 연구)

  • Yu, Man-Sun;Kim, Byung-Gi;Cho, Hyung-Hee;Hwang, Ki-Young;Bae, Ju-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.84-91
    • /
    • 2005
  • An experimental investigation has been carried out to examine heat-transfer characteristics of an axisymmetric, under-expanded, sonic jet impinging on a flat plate and the local measurement of surface pressures and heat transfer coefficients on a plate have been achieved together with a visualization test of shock structure in a jet. Heat transfer coefficients on a plate have been found to be changed significantly depending on the under-expansion ratio as much as the nozzle-to-plate distance. These phenomena could be explained by the wall pressure measurement and the shock visualization.

Prediction of Hydodynamic Impact Loads on Three-Dimensional Bodies (3차원 물체에 작용하는 유체동력학적 충격하중추정)

  • Troesch, Arimin W.;Kang, Chang-Gu
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.73-88
    • /
    • 1990
  • The three dimensional aspects of hydrodynamic impact are discussed. Theoretical and experimental results for a sphere and a cusped body are presented. The cusped body is axisymmetric and resembles the bow profile of a ship with flare. The sphere was subjected to both vertical and oblique impact angles while the cusped body experienced only vertical motion. Three dimensional calculations using normal dipole distributions and an equi-potentioal free surface are compared with experimental results. The theoretical boundary value problem was solved using a known interior flow. This procedure reduced computation times significantly. Comparisons between theory and experiment show that, depending upon the body shape theoretical estimates of the maximum impact force may be larger or smaller than the experimental values. But the theoretical estimate can be used for practical purposes.

  • PDF

Numerical Studies on Flow Structures with Various Shapes of Needle-type Pintle in Solid Rocket Motor (Needle 형 pintle 형상에 따른 고체 로켓 모터 내부 유동장의 수치적 연구)

  • Park, Byung-Hoon;Kim, Sang-Min;Yoon, Woong-Sup;Lee, Ji-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.249-252
    • /
    • 2011
  • 고체로켓추진기관의 추력조절을 위해 핀틀 기술이 사용된다. 아직까지 핀틀 유동에 대해 근본적인 물리적 이해를 돕는 연구가 공개되지 않아, 이 연구에서 다양한 형상의 needle형 핀틀에 따른 유동구조에 대한 수치적 연구를 진행하였다. 2차원 축대칭, 압축성을 고려하여, 상용 열유체 해석 프로그램인 FLUENT 6.2를 사용하여 해석을 수행하였다. 난류 모델을 검증하기 위해 기 수행된 실험 결과와 비교하였다. 핀틀 각도(tip angle)가 작아질수록 노즐에서 유동 박리점이 하류로 이동하며, 핀틀에서 발생하는 끝단 충격파가 약해진다. 핀틀 반경(tip radius)이 작아질수록 핀틀에서 발생하는 끝단 충격파가 하류로 이동하며, 크기는 약해진다. 핀틀 형상(contour)은 유동 박리 지점에 직접적인 영향을 미친다.

  • PDF

An Experimental Study for the CUP-CUP Axisymmetric Combined Extrusion (컵-컵형 축대칭 복합압출에 관한 실험적연구)

  • 김영득;한철호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.175-182
    • /
    • 1994
  • Effect of some process variables including area reduction, stroke advance, materials on the extrusion load, plastic flow and height ratio of upper to lower extruded parts in the cup-cup axisymmetric extrusion were experimentally investigated and analyzed. Deformed pattern is visualized by grid-marking technique using half-cut billets splitted. The influence of using split specimen and original specimen on the extrusion load and height ratio is examined by experiment.

  • PDF

Finite Element Analysis of Axisymmetric Multi-Stage Deep Drawing Processes (축대칭 다단계 디프드로잉 공정의 유한요소해석)

  • 윤정환;유동진;양동열;김석관
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.468-481
    • /
    • 1994
  • Mathematical description of arbitrarily-shaped tool surface are introduced by parametric patch approaches along with the related contact search algorithm. In order to maintain the advantages of membrane elements and to incoporate the bending effect, a BEAM(Bending Energy Augmented Membrane) element is proposed. Computation are carried out for some complex axisymmetric multi-stage deep drawing to verify the validity and the effectiveness of the proposed method.

  • PDF

Practical Determination of the Die Shape Using a Streamline in Axisymmetric Extrusion (유동경로를 이용한 축대칭 금형 형상의 실용적 ,결정)

  • 이용신
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.111-114
    • /
    • 2001
  • A new, simple method to determine the die shape using a streamline in extrusion is presented. This method assumes that a billet deforms naturally to minimize the energy input for the given process condition. Then, an optimal die shape can be determined along a streamline. Extrusion operations with two types of materials, strain-hardening material and strain-rate hardening material, are examined using this method. Predictions with the proposed method are compared with those by the previous optimizing model to show its efficiency.

  • PDF

A Practical Method to Determine the Die Shape using a Streamline in Axisymmetric Extrusion (축대칭 압출에서의 유동경로를 이용한 실용적 금형설계)

  • 윤상헌
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.79-82
    • /
    • 2000
  • A new simple method to determined the die shape using a streamline in extrusion is presented. This method assumes that a billet deforms naturally to minimize the energy input for the given process condition. Then an optimal die shape can be determined along a streamline. Extrusion operations with two types of materials strain-hardening material and strain-rate hardening material are examined using this method. Prediction with the proposed method are compared with those by the previous optimizing model to show its efficiency.

  • PDF

Investigation of Scarfed Nozzle Plume effect using Numerical Analysis (수치해석을 이용한 Scarfed Nozzle 특성 연구)

  • Choi, Jiyong;Lee, Sunjae;Kim, Jinyong;Park, Jaebeom;Lee, Sangyun;Heo, Junyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1003-1005
    • /
    • 2017
  • 본 연구에서는 수치해석을 이용하여 Scarfed Nozzle의 플룸의 형태와 유동 특성을 분석하였다. 일반적인 추진기관의 노즐과 다르게 Scarfed Nozzle을 가지는 경우 축대칭의 형상을 가지지 않기 때문에 3차원 해석을 진행 하였다. Scarfed Nozzle의 플룸의 형태를 분석하기 위해 Canted Nozzle의 해석결과와 비교를 하여 연구를 수행하였다.

  • PDF

Movement of a Horizontal Vortex Ring in a Circular Cylinder (원통 내 수평 보텍스 링의 거동)

  • Suh, Yong-Kweon;Yeo, Chang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.652-658
    • /
    • 2004
  • In this paper, we report the numerical and experimental solutions of the axi-symmetric flows in the axial plane driven by an impingement of fluid from the bottom wall of a circular cylinder. We managed to visualize successfully the flow pattern shown on the vertical plane through the container axis. The numerical results are shown to compare well with the experimental results for the case of infinity Rossby number. The satisfactory agreement between the two results was possible when in the numerics the free surface was treated as a solid wall so that a no-slip condition was applied on the surface. The numerical solutions reveal that inertial oscillation plays an important role at small Rossby numbers, or at a larger background rotation.

Effects of Dilatation and Vortex Stretching on Turbulence in One-Dimensional and Axisymmetric Flows (일차 및 축대칭유동에서 밀도변화가 난류에 미치는 영향)

  • Kim Jin-Hwa;Yoo Jung Yul;Kang Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.831-834
    • /
    • 2002
  • An analytic approach is attempted to predict the amplification of turbulence in compressible flows experiencing one-dimensional and axisymmetric bulk dilatation. The variations of vortex radius and vorticity are calculated, and then the amplification of turbulence is obtained from them by tracking three representative vortices. For a one-dimensionally compressed flow, the present analysis slightly underestimates the amplification of velocity fluctuations and turbulent kinetic energy, relative to that of rapid distortion theory in the solenoidal limit. For an axisymmetrically distorted flow, the amplification of velocity fluctuations and turbulent kinetic energy depend not only on the density ratio but also on the ratio of streamwise mean velocities, which represents streamwise vortex contraction/stretching. In all flows considered, the amplification of turbulence is dictated by the mean density ratio. In the axisymmetric flow, streamwise vortex stretching/contraction, however, alters the amplification slightly.

  • PDF