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Abstract

The three dimensional aspects of hydrodynamic impact are discussed. Theoretical and
experimental results for a sphere and a cusped body are presented, The cusped body is axisy-
mmetric and resembles the bow profile of a ship with flare. The sphere was subjected to both
vertical and oblique impact angles while the cusped body experienced only vertical motion.
Three dimensional calculations using normal dipole distributions and an equi-potentioal free
surface are compared with experimental results. The theoretical boundary value problem was
solved using a known interior flow. This procedure reduced computation times significantly.
Comparisons between theory and experiment show that, depending upon the body shape theore-
tical estimates of the maximum impact force may be larger or smaller than the experimental

values. But the theoretical estimate can be used for practical purposes.
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Structural damage to the forebodies of ships with

1. Introduction large flare angles has occurred in head and bow

quartering seas indicating that both vertical and

The hydrodynamic loads imposed upon a vessel horizontal (and possibly torsional) impact loads are

experiencing large amplitude motions can be severe. important.
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While the impact problem has been investigated
in various forms for years, most theories have dealt
with two-dimensional, vertical aspects. The classical
impact problem was formulated by von Karman[213}
and modified to include Wagner(22). These two
papers serve as the initial references for much of
the later studies. Some authors, such as Payne(17],
suggest that the modifications to von Karman’s work
were not necessarily improvements. Sarpkaya and
Isaacson(18] review the literature of ocean enginee-
ring applications for von Karman-type impact solut-
ions, These are important when considering the
wave-slam on horizontal or nearly horizontal circular
cylinders. More recently, the two-dimensional problem
including gravitational effects and the non-linear
free
numerically. Yim(26), Gallagher and McGregor(6),

and Greenhow(7], among others, have used various

surace boundary condition has been solved

numerical time stepping techniques to get good
descriptions of two-dimensional wedge impact inclu-
ding the spray jet.

Relatively few attempts have been made to rigor-
ously solve impact problems dealing with three
dimensional bodies. Examples of three dimensional
solutions are Shiffman and Spencer(19], Chuang(4],
and Miloh{12]). Shiffman and Spencer{19] and
Chuang(4] developed general expressions for the
pressure distributions and slamming forces on a cone.
Using similar assumptions, Miloh{12] analytically
derived the added mass coefficients for a double
spherical bowl. From these coefficients the impact
force on a sphere was calculated assuming that the
free surface is represented by an equi-potential or
zero gravity surface. Miloh(12] or Greenhow[7]
offer good reviews of the relevant literature.

Of practical engineering interest are the impact
forces in the bow region of a ship. Due to the
complexities associated with three-dimensional boun-
dary value problems, it has becen common practice

the

calculations of hydrodynamic forces to a two-dime-

to use simplifying assumptions that reduce
nsional strip theory. Examples of this are given by
Ochi and Motter(14] and[(15), Yamamoto, et al.[24],
Belik, et al.[1]), and Cliver(16]. These types of
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Fig. 1 Comparison between strip theory(2-D)
and three dimensional theory

hydrodynamic theories assume that the ship is of
sufficient length and cross sectional uniformity to
allow the hull to be divided into segments, each of
which is assumed to act independently of any other.
A number of two-dimensional solutions are then
summe] to yield the total impact force. Techniques
such as these are questionable in the bow region
where the assumed two-dimensionality of the flow
may not be valid. An illustration of the relative
error of the two-dimensional approximation for three-
dimensional bow loads can be seen in Figure 1.
There the nondimensional impact force for a sphere,
defined by C.=2(impact force)/pnR?V?, is calculated
using results similar to Miloh’s(12] three dimensional
theory and a strip theory based upon Kaplan and
Silbert’s[10] or Sarpkaya and Isaacson’s[18) formulas
for a circular cylinder. The slam coefficient is plotted
the

distance. In both cases, the free surface is represe-

as a function of z/R, normalized vertical
nted by an equi-potential surface and the velocity
of the body is constant. While the strip theory
approximation of the sphere represents an extreme
example, it demonstrates the need to exercise caution
when applying two-dimensional solutions in areas
where three dimensional effects are large.

This paper will present the results of an investi-
gation dealing with the three dimensional hydro-
dynamic impact problem. The approximate theory

of von Karman(21] will be used in three dimensions
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Prediction of Hydrodynamic Impact t.0oads on Three-Dimensional Bodies 7

in both the vertical and horizontal planes of motion.
Two different body shapes will be examined: the
sphere, for comparison with previously published
results and an axisymmetric flared body, similar in
shape to the bow profile of a ship’s forebody with
large flare. The sphere will be evaluated with zero
Both

theoretical and experimental results are presented.

and nonzero horizontal velocity components.

A numerically efficient technique for the solution
of the hydrodynamic three-dimensional boundary

value problem will be described.
2. Problem Formulation

Consider an ideal fluid domain below the surface
given by
z={(x, 5, 1) n
where (z,y,2) is a right-handed coordinate system
with z positive upwards and the origin located at
the mean free surface. Then the complete non-linear
free surface condition that the velocity potential, ¢,

must satisfy is given by(see Newman[lS])

X2 ¢ a‘f’

V¢ y(Fg:re)=0
2
where Eq. (2) must be true on the surface defined
by Eq.(1). Following von Karman(21], we assume
that when the motion of a body on the free surface
occurs over a very short time interval, the temporal
derivatives of the velocity potential are large com-
pared to the spacial ones and the free surface boun-
dary condition can be approximated as
$=0 3

on z=0. The body boundary condition follows from
2y 0
on

Here V.
is the velocity vector of the body with components
(U,V,W) and =

This boundary value problem is similar to the

on the instantaneous surface of the body.

is the outward unit normal vector.

one proposed by von Karman(21]. It ignores effects
due to changes in the local water surface elevation
such as the spray jet. However, Payne(17) demon-

strated that this analytical model actually prnduced

KIS B2TE S 3 19904 9A

results that compared better with experiments than
later “improved theories”, such as Wagner's splash-up
factor. One possible cause for concern, though, is
that this theory will not predict pressures and
consequently forces on any part of the object’s
surface that has not passed the mean free surface.
For bodies with concave shapes, such as ships with
large flare, the spray sheets may contribute signific-
antly to impact forces. In the following sections,
experimental results for a flared body will be comp-
ared with theoretical calculations indicating the
usefulness and limitations of this relatively simple
theory.

The pressures, and subsequent forces, are found
from Bernoulli’s equation. Bernoulli’s equation is

given as

K2
Bt

where in a consistent theory, the quadratic term is

+‘—V¢ F¢+gz=const &)

of higher order and assumed small, The pressure
may be integrated to find the forces acting on the
body. In an alternative derivation, Faltinsen(5] has
rederived the traditional result that the force on a

body is given by
Vertical Impact Force::-—fddt‘ (A ze(t))

+J]-stpgzn3 6)

In Eq. (6), As is the heave infinite frequency
added mass coefficient as a function of submergence
and z¢(2) is the vertical displacement as a function
of time. It is common practice to assume that the
velocity of the body is constant over the time of
impact. The impact force then becomes the time
derivative of the added mass. By time stepping the
body through the free surface, the body boundary
condition can be satisfied exactly on the below-mean-
waterline portion of the hull. The assumption of
constant velocity is not a necessary condition but
rather one of convenience. As will be demonstrated
in later sections, it may be appropriate for bodies
such as the sphere, but less so for the axisymmetric
flared body used in this study.

Conceptually, the pressure release problem defined

by Eq. (3) and (4) may be solved in a straightfor-



70
ward manner using distributions of surface singul-
arities. This has been done in the field of hydrob-
allistics using source distributions by Wardlaw, et
al.[23] for the forces acting on spheres, cones, and
disks due to high-speed oblique water entry. In
practice, the computational difficulties associated with
three dimensional ship-like shapes and the required
large number of time steps scem to have prevented
researchers from actually using this method to
calculate forces for arbitrary bodies. Oliver(161 gives
one cxample of large compuler time estimates for
solving extreme ship motion problems.

In this work, the hydrodynamic boundary value
problem at each time step will be solved using a
normal dipole distribution with a corresponding
interior flow. This techniquc is an expansion of that
outlined by Chang and Pien(3]) and Yeung{25]. In
particular, from the classical use of Green’s theorem
the dipole strength is equal to the difference between
the interior and exterior potentials. Solving for the
dipole strength with a known interior flow immedi-
ately yields the exterior potential and thus the
pressures. Breslin, et al.[2) has shown that the
interior problem is cquivalent to the interior fluid
For

demonstrated in the

moving vertically as a solid mass of water.
it will be

following paragraphs that the interior problem is

horizontal motion,

represented by a dipole sheet on the inner free surface

with the interior fluid mass moving horizontally.

3. Problem Solution

Consider a body with bounding surfaces and
outward unit normal » as shown in Fig. 2. The
exterior and interior domains are R, and R; respe-
ctively. The exterior bounding surfaces on the free
surface, body, and at infinity arc given as Sr., Ss,
and S..

interior free surface,

The interior bounding surfaces arc the
Sr;, The
usual governing equations for the velocity potential,
#(X), and a Green {unction G(X;Y),
(X)) =0
—PPG(XY)=8(N-1)

where X is the vector to the field point,

and the body, Sg.

are

M
Y is the
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Fig. 2 Coordinate system and bounding surfaces

vector to the source point, and 3(X—Y) is the Dirac
delta function. Through the application of Green'’s
second identity in R, the exterior potential is given
as

¢
i
!

Spt SFed Seo ’ on

4X )=

(1) 26T | as (8

When Green’s second identlty is applied again in

R;, the result is

..., [6ir) 2D,

—u1) 26K Y as—o ©
Subtracting Eq. (9) from Eq. (8) gives
s 0= [ | G (28— 0C0)

on ”>

BG(X YY) ]

—($(Y)—d:( Y22
_HSF, {G(K; X)E%Z)_

BG(X Yy
g (Y)——5 s

+ H see t G(X3Y) %,(Z)

oG()& )OI ‘dS

~i(¥)
- [ewx: Z)M

BG(X Y)

—¢ Y )—5 = | dS 10

For the pressure release problem, the appropriate

Green function is

GLYs Y)""_ ( |X1 YT -I'Xer'l)

where Y/ is an image vector of ¥ about z=0. Since
both G(X:;Y) and ¢.(X) are zero on Sr, and far

an
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from the body both go to zero at a sufficient rate,
the integrals S.. and Sr, contribute nothing in Eq.
(10). The interior potential is arbitrary and selected
such that the normal derivatives of the interior and

exterior problems are continuous. In other words,

29 _ 38 _,

on on
The resulting

on Ss.

distribution has a
¢. on Sp.
the following form for

surface dipole
strength defined as p where p=¢;—
Eq. (10),

potential is

_ G(X:Y)
g = [ w(x) ZELE) a5

+f, [eern 220

aG(X:Y) J
on

As X approaches a boundary point on the surface

From

the exterior

—¢i(Y)- (12)

S, the exterior potential becomes

pe)=— £ [ ) 2OEIED g5
n - 9¢:(Y)
o 20

—p() 2EED) | s (1)

for X on Sz Since ¢.(X)=¢:(X)—p(X) on Ss, the

above equation becomes

$i(X)= F’(X)ﬁ ~Hs”#(Y) a_GLX_’Z)_dS

o, oo 20

— i) 2G| gs (14)

which is a Fredholm integral equation of the second
kind.

3.1. Determination of the Interior Potentials

The governing equation for the interior potential,
On the body

surface, Sg, the boundary condition for ¢: is

¢i, in R; is the Laplace equation.

on on b
By also setting
%92' =Ven

on the interior free surface, Sri, ¢ is determined
uniquely in R; except for an arbitrary constant. The

special cases of rigid body motion in heave and sway

KEEREB S F27E F 34 19905 9A

are discussed below.
For heave, let the interior potential be given as
$:(X)=Wz (15)
where W is the vertical velocity component and X
is in R,. By inspection, it is clear that the condition
of

is satisfied on both Spand Sr;. Since both ¢;(X)=0
and G(X:;Y)=0 on Sr;, Eq. (14) becomes
p0=0 [ 2&Eas  ap
for X on Ss.
For sway, let the interior potential be given as
:(X)=Vy an

where V is the horizontal velocity component and
X is in R;. Again by inspection, it is clear that the

condition of

is satisfied on both Sp and Sr;. The integral equation
in this case is somewhat more complex than for
Using the fact
that G(X;Y )=0 on Sr;, or alternatively that

heave since ¢: is not zero on Sr..

0P __
“on =0
on Sri, Eq. (14) becomes
) r oG()& Y) (X)
g0+ [[ (v PEEED g5 ().
[ OG(-X"D ds (18)
5 on

for X on Sg.

The dipole strengths for the leave and sway
problems are given as the solutions to Eq. (16) and
Eq. (18) respeetively. With these strengths known
and the interior potential given, the relation may
be used to find the exterior potentials, This method
of solving boundary valuc problems eliminates the
need to find the values of the Green function.
3.2. Determination of the Impact Pressures
Cnce the potential is known, the pressures may
be found by applying Eq.(5), Bernoulli’s Equation,
Bernoulli’s equation is derived for variables relative
system. However, it is

to an inertial coordinate

convenient for the purpose of solving the impact
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boundary value problem to use body fixed coordinates.
Under these circumstances, spacial differentiation is
invariant with coordinate transformation, but tem-
poral differentiation is not. If X is a position vector
in the inertial coordinates and X’ is a position vector
in the body fixed coordinates, then they are related
by

X=X~ f;z(t)dt (19)

where V(U, V, W) is the velocity vector of the body

9y o2

Py Ve, 3 W(e).
(20)

Let ¢(X,¢) be the potential in inertial coordinates

and ¢’(X, ) the potential in body fixed coordinates,

then by virtue of the chain rule of calculus

09.(X,8) _ 09 (X" 8) a¢.’ (X', t)
ot - ot v oz’

— V@ BELD. i AN

Bernoulli’s Equation, then, in body fixed coordinates
is
0¢./ (X', £)

ot

X [
o

— ( U ,a,ﬂg%'_’fl + V() _a_?%(;_ffs_t)m
+ W) ﬁ%%fﬁ)

+%‘V¢e’(g,, t) ¢ V¢¢I(2§” t) +gz
2

(22)
Integrating —@a——ng over the body, where #; is the

vertical compofuant of the unit normal, yields the
time derivative of the added mass as discussed pre-
viously. The force resulting from the convective
terms in Eq. (22) does not appear in the traditional
calculations. (See Eq. (6)). The influence of the
various force components are discussed in later
sections. The time differential in Eq. (22) is found
through numerical differentiation of the potential at
various time steps. The fluid velocity vector in body
fixed coordinates, 7(¢.’), with components (u,v,w)
is found by using the vortex lattice concept. Follo-
wing Thrasher [20] and others, the jump in velocity
vector, V,—V;, across a normal dipole sheet can be

Armin W. Troesch and Chang-Gu Kang

represented by the vector cross product between the
unit surface normal, »n, and the vorticity vector,
@, or
Ve=Vi—axw 23)
Here V, and V; are the surface velocity vectors on
the exterior and interior surfaces respectively. The
numerical determination of the vorticity vector is
described in the next section.
Given the pressures by Eq. (22), the forces and
consequently the accelerations may be found through
integration. The usual relations for the accelerations,

velocities, and displacements are shown below.

F,=mZ=—J- pn.dS

Fy=m{=— Hpnyds (24)
Z(t):f;Z(t)dt Y(t):f;Y(t)dt
Z(t):f;Z(t)dt Y(t):f;Y(t)dt (25)

3.3. Computational Details

The surface description of the body and the solu-
tions to the integral equations, Eqs. (16) and (18),
follow the method of Hess and Smith [8). In the
interest of computational efficiency, the body was
divided vertically into four or five large blocks. The
boundary value problems were solved and the velocity
potential and velocity vector on the body were
calculated in 8~10 time steps for each block. For
the particular examples used in this paper, symmetry
reduced the number of elements by a factor of four,
In any particular block, the number of circumfere-
ntial elements, M, was fixed and the number of
vertical (azimuthal) elements was increased by one
for each time step. Thus, at time # the number of
elements was MN and at time #+4¢ the number
was M(N-+1). For the examples considered in this
paper, the range of N was 8 to 16 and the range of
M was 6 to 8. When elements were required on the
inner free surface, as in the sway problem, the
number of surface elements was (M—1). The velocity
potential for body fixed coordinates was assumed to
locally follow a second order polynomial with respect
to time. The partial derivative was casily found as

shown below

Journal of SNAK, Veol, 27, No. 8, September 1990
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Fig. 3 Determination of vortex filaments from
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The vorticity vector, @, used in the determination
of the velocity vector V., is found using the vortex
lattice method(Thrasher(20]). Since the doublet
strength is assumed to be constant over a panel, the
local induced velocity is equivalent to the line
integral of the vortex filament strengths. As shown
in Figure 3, the net vortex strength is found by
superimposing adjacent elements. The vorticity vector
at the j-th panel null point, w;, is given by
= LI

N iy}

where [; denotes the vectors connecting consecutive

@n

nodes of the j-th panel, I'; is the branch circulation
of the corresponding vortex segments, A; is the area
of the j-th panel, A; is the area of the adjoining
panel on the i-th side, and m is the number of panel
edges, either three or four.

The velocity at the free surface (2=0) in the
idealized double body problem is infinite for non-
wallsided shapes. Numerically this is represented by
large values for the vortex strengths on the panels
next to that equi-potential surface. Based upon the
physics of the problem, and the two dimensional
results for the pressure distribution in the spray jet
(see Yim(26), Gallagher and McGregor (6], and
Greenhow (7)), the vortex strengths for filaments

at the free surface were equated to the lower adjacent

KEEAEB e TE F278 3% 19904 9A

ones.

The computer program was verified by comparing
results with the works of Miloh {12] and Hulme
(9]. For

hemisphere gave a result that was within 0.9% of

the later, a 20%20 segmented quarter

the published value for the sway added mass coeffi-
cient(0.2732) and within 0.2% for the heave added
mass coefficient(0.500).

4. Theoretical and Experimental
Comparisons

Impact experiments were conducted in the Ship
Hydrodynamics Laboratory at the University of
Michigan. As mentioned in the introduction of this
paper, two different body shapes were tested: a sphere,
and an axisymmetric flared body, similar in shape
to the bow profile of a ship’s forebody with large
flare.

The sphere was a composite construction of plexi-
glass, concrete, wood and metal. It was ballasted to
float as a hemisphere. The outside diameter was
0.502m (19.8in). The flared body was of similar
construction. Both the sphere and flared body dime-
Also

shown are the panel distributions used in the com-

nsions and profiles are shown in Figure 4.

putations, The flared body had a total weight of
74.7N (16.8 1bs) and floated at approximately 90%
of the total height of the body. A transferable
instrument packet containing two accelerometers,
one for vertical acceleration and one for horizontal
acceleration, was used in both bodies. With these
measurements the time history of the impact force
can be easily determined since the force is equal to
the mass of the object multiplied by the instantaneous
acceleration. The accelerometers were of the piezo-
electric type with a natural frequency in excess of
35K Hz.

The test matrix included dropping the sphere and
flared body from three heights, 0.61m(2 ft), 1.22m
(4 ft), and 1.83m (6 ft).
impact velocities of 3.46m/s (11.3 ft/s), 4.89m/s
(16.0 ft/s), and 5.99m/s (19.7 ft/s) respectively.
For the 0.61m (2 ft) and 1.22m (4 ft) heights, the

These corresponded to
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Fig. 4 Sphere and flared body panel distributions and dimensions.

sphere was also dropped from a moving carriage
with a speed that corresponded to the vertical impact
velocity. This resulted in an oblique entry angle of
45 degrees. Each drop was performed two or three
times as a check on repeatability. The level of
repeatability was good as discussed in the Appendix
Al.
4.1. Experimental Results

Both the dimensional and non-dimensional results
are displayed in the following figures. Figures 5 and
§ show the dimensional acceleration in multiples of
the gravitational constant plotted as a function of
elapsed time in milliseconds. They show the vertical
acceleration for the sphere and flared body with zero
horizontal velocity respectively. All three drop
heights are included.

The dimensional results of Figures 5 and 6 are
replotted in nondimensional form in Figures 7 and

8. Figure 9 is a plot of nondimensional vertical and

Fig. 5 Experimental impact accelerations for a
sphere(dimensional)-three drop heights

v-ACC. {GIAY)

«

LN

‘
2

19 E) 3¢ ) S0 80 75
Tiug (s8¢ ({3

Hie ofT s T OFT

Fig. 6 Experimental impact accelerations for a
flared body(dimensional)~three drop he-

ights
horizontal accelerations for the sphere with a 45
degree entrance angle. Both drop heights for this
case are included. The vertical slamming coefficient,

C,: replaces the vertical acceleration. It is defined
as

Cos= ToaliVE (28)

where m is the mass, Z is the vertical acceleration,
p is the water density, L is some representative
length, (the radius for the sphere and half the top
transverse dimension for the flared body, 0.195m
(7.7 in), D=2L and Vjyis the initial vertical impact
velocity. The time axis has been normalized by D/
V,. For oblique entry impact, the horizontal slamm-
ing coeflicient, Cis, is defined. In it, the horizontal
acceleration, ¥, replaces the vertical acceleration.
In the non-dimensional plots for the sphere(Figure

7), the normalized accelerations have approximately

Journal of SNAK, Vol. 27, No. 3, September 1990
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Fig. § Experimental nondimensional vertical
slam coefficients for a flared body-
three drop heights

the same maximum value. However, the normalized
maximum impact for the flared body (Figure 8) is
dependent on the drop height. As time or the depth
of immersion increase, the buoyancy becomes relat-
ively more significant for bodies dropped from lower
heights. Also, if the body accelerates and the velocity
fails to remain constant, then the normalization is
not completely valid, This is consistent with Eq.
(22), Bernoulli’s equation, where the velocity pote-
ntial terms for constant velocity may be normalized
by the velecity squared, but the hydrostatic term,
gz, follows the Froude scaling law.

The non-dimensional maximum vertical impact

FE AR O I H27E F 39 19904 9K

Fig. 9 Experimental nondimensional vertical
and horizontal slam coefficients for a
sphere-two drop heights

force for the oblique entry test (Fig. 9) does not
differ significantly from the normal entry results.
This indicates that the coupling force for the sphere
(the vertical force due to horizontal impact velocity)
is not large. The maximum of the horizontal force
is somewhat smaller relative to that of the vertical
force and occurs at a latter time. The above con-
clusions are clearly hull-form dependent and would
not necessarily hold for long, slender shapes expe-
riencing oblique slamming.
4.2. Theoretical Results

The effect of the buoyancy terms is shown in

Fig. 10 and 11 for the sphere and flared body

respectively. Constant velocity during the entire

SUAM COTF {Tra!

Fig. 10 Effect of buoyancy in the vertical impact
force of a sphere-three drop froude nos
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Fig. 11 Effect of buoyancy in the vertical impact

Fig. 13 Various force components acting on a

force of a flared body-three drop froude flared body during vertical impact
nos (FN=4.3320)
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Fig. 12 Various force components acting on a
sphere during vertical impact (FN=
3.8158)
immersion was assumed. The hydrostatic term has
been separated from the rest of the theoretical pressure
terms in Eq. (22). The velocity potential contribut-
ions were integrated and plotted as the solid line,
labeled SUBTOTAL, The normalized buoyancy forces
for three different drop Froude Numbers are shown
as the dashed lines. The drop Froude Number is
defined as Vo/ vgL where Vg and L are defined in
Eq. (28). All the force components were normalized
by the factors 0.507L2V,?, consistent with Eq. (28).
Similar to the experimental terms normalized with
respect to the velocity squared become relatively

more important for the impact forces with lower

Fig. 14 Time simulation of the vertical velocity
of a sphere dropped from various heights
(FN=2.2030, 3.1156, 3.8158)

inital velocities.

The various force components of the different
pressure terms in Eq. (22) are shown in Fig.12 and
13 for the sphere and flared body respectively. Initial
velocities corresponding to drop Froud Numbers of
3.8158 for the sphere and 4.3320 for the cusp were
assumed. These velocities remained constant during
the impact fall. It is of interest to note that nume-
rically, the term associated with the coordinate
transformation of the time derivative, V*DPHI/DZ
(see Eq. (21)), approximately cancels the quadratic
The solid line in Fig. 12,

time derivative of the velocity

velocity term, 0.5%Q%

representing the
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Fig. 15 Time simulation of the vertical velocity
of a flared body dropped from various
heights (FN=2.5011, 3.5371, 4.3320)

potential in body fixed coordinates, has a maximum
of Cy;=0.952. This value compares well with the
results published by Miloh(12] where an equation
analogous to Eq. (6) was used to find the vertical
slam coefficient. The maximum value of the slam
coefficient for a sphere including all the terms of
Eq. (22) except buoyancy, is C,=~0.903. See Fig. 10.

Simulations of the velocity time histories for the
two bodies are shown in Fig. 14 and 15. Three
different drop heights corresponding to drop Froude
Numbers of 2.2030, 3.1156, and 3. 8158 for the sphere
and 2.5011, 3.5371, and 4.3320 for the flared body
are displayed. The instantaneous velocity has been
normalized by the initial impact velocity. For each
time step, the forces, accelerations, velocities, and
displacements were calculated using Egs. (24) and
(25). Clearly, the velocities do not remain constant
during the fall. The maximum impact force for the
sphere occurs at a non-dimensional time (TV,/D)
of 0.062, a point where the velocity has been reduced
by approximately 5.0%. For the flared body, the
maximum is at TVy/D=0.63 and the velocity has
been reduced by 23.1%. These curves suggest that
impact calculations should include the acceleration
and velocity changes due to body dynamics. This is
particularly true for flared bodies where the location
of maximum force corresponds to a significant dec-

rease in velocity.

KEERSEE HoT8 £ 3% 19904 9K

4.3. Comparison Between Theory and
Experiment

A comparison of the theoretical and experimental
non-dimensional results are shown in Figs. 16,17,
and 18. In Fig. 16, the sphere test results with a
perpendicular entrance angle are given for the three
different drop heights. Fig. 17 shows the flared body
results for similar conditions. The sphere test results
with the 45 degree oblique entrance angle are shown
in Fig. 18 for two drop heights. velocities used in
the theoretical calculations varied in time as described
in the previous section. The theoretical maximum
slam coefficients in Fig. 16~18 differ from the ones
in Fig.10 and 11 due to the decrease in velocities

and the addition of the buoyancy terms.
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Fig. 168 Comparison between theory and expe-
riment of the vertical slam coefficient
for a sphere(FN=2,2030)
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Fig. 16b Comparison between theory ana expe-
riment of the vertical slam coefficient

for a sphere(FN=3,1156),



(e-01)

SLam COLF (Cos)

e o oo R

10 o 30 Y] 30 a0
TWE tTevesD) (e-02)

CALCULATION e o = EXPEAIMENT

Fig. 16¢c Comparison between theory and expe-
riment of the vertical slam coefficient
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Fig. 17a Comparison between theory and expe-
riment of the vertical slam coefficient
for a flared body (FN=2.5011)
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Fig. 17b Comparison between theory and expe-
riment of the vertical slam coefficient
for a flared body(FN=3,5371)
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Fig. 17¢ Comparison between theory and expe-
riment of the vertical slam coefficient
for a flared body(FN=4,3320)

Generally, the theory seems to under predict the
maximum vertical impact force for the sphere by
approximately 5 to 10%. Conversely, the theory over
predicts the maximum vertical force of the flared
body. This is possibly a result of the spray jet
separating from the flared upper sections. The theory
also tends to stretch the duration of the impact out
when compared with experiment. This is true for
both the sphrere and flared body.

The theoretical horizontal slam coefficient, Css,
does not predict the sharp rise in impact force.
While it approaches the same maximum value, it

does so at a much later time. The experimental
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Fig. 18a Comparison between theory and expe-
riment of the vertical and horizontal
slam coefficients for a sphere at an
oblique angle of impact(FN=2.2030)

Journal of SNAK, Vol, 27, No. 8, September 1990



Prediction of Hydrodynamic Impact Loads on Three-Dimensional Bodies 85

way
‘t I '
G \“
2w //\ U
= 1 4 AR
.
S ~.
~Ioe
"“b\‘\—‘,\ -
T 7o £ T )
R TIME (FevasD) ity
A
3 \‘/‘\

— THEOEY (Cve)

e (Cen)
I Q. (che

......... THESRY (Cha)

Fig. 18b Comparison between theory and expe-
riment of the vertical and horizontal
slam coefficients for a sphere at an
oblique angle of impact(FN=3.1156)

results may be due to the sphere impacting on the
water in the forward spray sheet. This, of course,

is not contained in the theoretical model.
5. Summary and Conclusions

The three dimensional characteristics of the impact
problem have been discussed. Two different hull
shapes, a sphere and a flared body, were evaluated
for impact forces. Theoretical and experimental
comparisons were made. The the theoretical calculat-
ions were done using dipole distributions with a
known interior flow and an equi-potential free surface
condition. The addition of the interior flow reduced
the computation time significantly. The contributions
from the various terms in Bernoulli’s equation were
described. Theory under predicted the maximum force
of the sphere but over predicted the force for the
flared body. The presence of the spray jet, which
was not included in the theory, may be important
in attenuating the maximum impact force in flared

bodies.
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Appendix A] Experiments

The experiments which were conducted at the
Ship Hydrodynamics Laboratory (SHL) investigated
both vertical and oblique angles of impact. For the
vertical tests, two shapes(a sphere and a flared body)
were dropped from three heights. For the oblique
impact tests, the sphere was dropped from SHL
towing carriage. The carriage speed matched the
vertical component of the initial impact velocity
resulting in an oblique entrance angle of 45 degrees,

The vertical accelerations were measured for the
vertical impact tests while the vertical and horizontal
accelerations were measured for the obligue tests,
The accelerometer transducers(PCB Piezotronics Inc.,
model no. 202A02) had natural frequencies exceeding
35KHz. An instrument package was constructed to
expedite the transfer of the accelerometers between

the sphere and flared body. This package could be
Journal of SNAK, Vol. 27, No. 8, September 1990
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measured
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Fig. Al Dynamic model of the experimental
apparatus
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Fig. A2 Experimental impact time history-
measured  transducer acceleration
(input) and acceleration of body.
center of gravity(output)

bolted into the top of either shape and the whole
assembly made watertight.

Analog signals from the accelerometers were
digitized at a sampling rate of 21KHz. Due to the
flexibility of the sphere or flared body, the total
system natural frequency was considerably lower
than the natural frequency of the individual trans-
ducers. Natural frequencies of approximately 450Hz
and 275Hz were estimated for the sphere and flared
bodies respectively. These frequencies resulted in
adequate rise times for the lower drop heights where
the initial velocities were relatively small and the
duration of impact stretched out. However, at the
higher drop heights, the steep rise time produced
significant dynamic system response increasing the
measured maximum acceleration.

In order to get the acceleration of the center of

KM EEE #2748 # 3% 19905F 9A

gravity of the impact body from an accelerometer
suspended inside that body, the entire system was
modeled as a single degree-of-freedom spring-mass-
damper system experiencing base excitation. (This
method is similar to one suggested by Yung[27)).
A schematic of the experimental model is shown in
Figure Al.
transducer and the center of gravity of the body

The displacements of the accelerometer

are denoted as X; and X, respectively. The trans-
ducer acceleration, X, was measured while the base
acceleration, X,, was the desired output. Since the
accelerometer package accounted for less than 6%
of the total system mass, the motion of the center
of gravity of the sphere was assumed to be indepen-
dent of the package motion. The linear equation of
motion for the accelerometer package is then

mX,=k(X— X)) +c(X.—X) (A1)
or separating the response, X, from the excitation,
Xa,

mX e X +hX =cXo+kX, (A2)
where the mass of the accelerometer package is m,
Define now

w.l=k/m e/m=2Lw,

Then Eq. (A2) becomes

X1 +200, X + 02X =200 X3+ 0a2 Xz (A3)
Following linear system analysis, the excitation,
X,, and the response, X;, are related by the fre-
quency system response function H{w) where

(transducer accel.)/(base accel.)

=(—?X))/(—e*Xy) =X/ X,=H(w) (A
and, from the solution for Eq. (A3)
—__i02lo.te,t
Ho) = o et (A%)

The impulse response function, k(¢), is given as
the Inverse Fourier Transform of H(w). (See Kaplan
(1962) or any other book on the calculus of linear
systems.) It can be easily shown that the Inverse
Fourier Transform of Eq. (A5) is

2 2
_0a?—2(Lwn)" sinwqt)
wa

(A6)
where ws=wn v1—¢? is the damped natural frequency.

Rh(1) =e tr*[2Lwacoswat +

The damping factor, £, and the damped natural
frequency, wq, were calculated from the experimental

time history.
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For the linear system shown in Figure A1, the
transducer acceleration, X'l(t), is related to the base

acceleration, X'z(t), by the convolution integral
o t .
= dr Ba—) (). (A7)

In the application discussed in this paper, X;(¢)
was the measured quantity while X.(¢), the acce-
leration of the body center of gravity, was the
unknown.

Through discretization, the following

approximation for Eq. (A7) may be written:

Xl(th):jz::1X2(tj)fii-_ dTh(lk—T) (AS)

The integral term in the above equation has a closed
form expression. Eq. (A8) may then be inverted to
yield the body acceleration X, at time step ¢,.

Armin W. Troesch and Chang-Gu Kang

One example of the data reduction technique is
shown in Figure A2. There the measured impact
acceleration time history is plotted with the results
of Eq.(A8). The experimental accelerometer response
is plotted as the solid line while the simulated base
acceleration is plotted as the dashed line. The reli-
ability of the data was established in two ways.
First, the tests at the various drop heights were
repeated two or three times. When superimposed upon
each other, the resulting time histories showed a
high degree of repeatability. Next, the results for
the different drop heights, when normalized by the
velocity squared, showed approximately the same

maximum accelerations. See, for example, Figure 7.
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