추천자 시스템은 E-commerce 사이트에서 소비자가 관심을 가지는 상품에 대한 정보를 수집하여 소비자가 구매할 것으로 예상되는 상품을 추천하는 목적으로 개발되었다. 추천자 시스템을 구축하여 성공적으로 활용하기 위해서 해결해야 할 과제로 취급 상품이 대량인 경우에 알고리즘의 효율성 문제라고 볼 수 있는데 본 연구는 문서 검색에서 사용되는 LSI(latent semantic indexing) 분석법을 이용하여 추천자 시스템을 개선하는 방안을 연구하고자 한다. LSI 분석법을 이용하여 고객-상품 구매행렬에서 고객이 상품을 구매하는 경향을 효과적으로 파악할 수 있다면 목표고객에 대한 인접고객군을 생성하는 계산 노력은 현저히 감소되어 추천자 알고리즘이 실시간으로 고객 데이터베이스로부터 많은 인접 고객을 효율적으로 검색할 수 있을 것으로 기대된다. 본 연구는 E-commerce 사이트로부터 얻는 실제적인 고객 자료와 유사한 자료를 시뮬레이션을 통하여 재생하고 이를 바탕으로 LSI에 의한 추천자 시스템의 효율성을 분석하고자 한다.
이러닝 시스템에서 학습자에게 적합한 콘텐츠 선택을 돕기 위한 콘텐츠 추천 시스템은 필수적이다. 학습자의 선호도를 통한 콘텐츠 추천은 협업 필터링 추천 방법과 내용 기반 추천 방법이 가장 많이 사용되고 있다. 그러나 기존추천 방법들은 학습자의 학습수준을 고려하지 않고 다른 사용자의 선호도를 기반으로 학습 콘텐츠를 추천한다. 따라서 상대적으로 콘텐츠를 학습한 학습자가 적은 경우 추천의 효율성이 떨어지고, 새로운 아이템이 추가될 경우 추천이 쉽지 않은 단점이 있다. 이 문제를 해결하기 위해 우리는 학습 콘텐츠의 유사도와 난이도에 기반한 콘텐츠 추천 방법을 제안한다. 학습 콘텐츠의 두 특성을 반영한 추천함수에 의해 선행학습 성취도가 낮은 학습자에게는 난이도가 낮고 유사도가 높은 콘텐츠를 추천하고, 성취도가 높은 학습자에게는 난이도가 높고 유사도가 낮은 콘텐츠를 추천한다. 이와 같이 다른 학습자의 선호도와는 무관하게 학습자의 성취도에 따라 가장 적합한 콘텐츠를 추천할 수 있다.
저널 논문 투고 및 심사시스템에서의 논문 제출은 상시 이루어진다는 특성 때문에 논문이 제출된 시점에 적절한 심사자들을 찾아 배정하기란 쉽지 않은 문제이다. 본 논문에서는 이러한 문제를 해결하기 위하여 제출된 논문에 적절한 심사자들을 추천해주는 알고리즘을 제시하고자 한다. 심사자 추천 알고리즘에서는 해당 논문의 전문가를 심사자로써 추천하기 위하여 제출된 논문들의 키워드(Keyword)와 심사자들의 전문지식태그(Expertise Tag) 정보를 활용한다. 또한 심사자들의 기존의 심사 정보를 토대로 심사활동지수를 평가하여 이를 심사자 추천에 활용하고자 한다. 제안하는 알고리즘을 검증하기 위하여 본 논문에서는 실제 저널 논문투고시스템에 추천 알고리즘을 적용해보고 이의 결과를 제시한다.
프로그래밍 교육은 학습자 개개인의 특성에 맞는 수준별 단계별 학습이 필요하다. 추천시스템은 개인화서비스를 위해 사용되는 방법의 하나로, 본 연구에서는 추천시스템을 사용하여 웹기반 프로그래밍 교육 환경에서 학습자 개개인에 적합한 학습을 추천할 수 있는 방법을 제공한다. 제안하는 수준별 프로그래밍 학습을 위한 추천시스템은 학습주제별 학습수준 기반 학습자 프로파일과 학습주제사이의 연관성 프로파일을 이용한 협업 필터링을 사용하여 특정 학습자의 학습수준과 학습범위에 적절한 프로그래밍 문제를 제공하도록 한다. 그 결과 프로그래밍 언어 교육과정에서 발생하는 수준별 단계별 학습에 맞는 프로그래밍 문제 제공의 어려움을 해결하여, 학습자의 프로그래밍 능력 향상의 결과를 얻을 수 있었다. 더 나아가 기존 협업필터링 방법을 사용하는 경우와 비교해 볼 때 추천 성능향상 및 분석 시간 감소를 통해 추천시스템의 한계점 중의 하나인 확장성을 해결할 수 있는 방법을 제시한다.
본 연구는 학습자 및 교수자의 학습 방법 및 교수방법을 선정하는데 있어서 집단 지성 알고리즘을 적용하여 콘텐츠 추천 시스템을 개발 하여 학습자 및 교수자가 효과적인 학습을 진행하는 것을 목적으로 하고 있다. 이를 위하여 최근 쇼핑몰이나 영화등에 적용되는 추천시스템을 교육에 적용하여 교수학습 주제를 선정시 학습자 수준, 학습환경, 학습자의 상태등에 따른 적절한 학습 방법 및 교수 방법을 제공하여 학습자는 본인에게 알맞은 학습 방법을 찾는데에 더 효율적이여 교수자는 교수학습과정을 설계하는데 시간을 절약할 수 있는 시스템을 개발하였다. 최종적으로 개발된 학습 콘텐츠 추천시스템에 대한 정확성 및 효용성은 교수자 및 학습자들의 지속정인 사용으로 데이터가 쌓인 후 사용자들의 평가를 통하여 검증이 필요 할 것이다.
추천자 시스템은 전자상거래 사이트에서 고객의 상품 구매 정보를 수집하여 고객에 대한 예상 구매 상품을 추천하는 목적으로 개발되었다. 본 연구는 대형 전자상거래 사이트에서 고객의 상품 구매 이력이 활용 가능한 경우에 전통적인 통계기법인 군집분석 및 고객 간의 상품 구매 상관성을 이용하는 기존 추천자 시스템(협력적 필터링 기법)과 문서 검색에서 사용되는 LSI분석에 기반한 협업 필터링 기법을 상품 추천에 적용하여 각 기법의 상품 추천 효율성을 비교 분석하였다. 문서-용어 행렬과 유사한 구조를 가지는 고객-상품 구매 행렬에 문서 검색에 사용되는 LSI 분석법은 고객의 상품구매 경향을 원 상품 수보다 축소된 차원의 변환 상품을 통하여 파악함으로써 목표고객에 대한 인접고객군의 생성 노력을 현저히 감소시킬 수 있어 결과적으로 실시간으로 적용되는 추천자 알고리즘의 효율성을 개선할 수 있을 것으로 기대할 수 있다. 가상적인 고객-상품 구매 리스트를 대상으로 실행한 시뮬레이션 실험 결과에서도 알고리즘의 효율성 평가측도인 recall과 정확도 및 F1에서 LSI 기반 협력적 필터링 기법이 기존의 방법보다 우수한 결과를 나타내었다. 시뮬레이션 결과, 인접고객 군의 크기가 일정한 수준에 이르면 그 크기를 증가시키더라도 알고리즘의 효율성은 별로 개선되지 않으며 또한 추천 상품 수가 일정 수준에 도달하면 추천 정확도가 낮아지는 정도에 비해 recall의 개선도는 별 변화가 없는 것으로 나타나고 있다. 추천자 시스템을 구현하는 용도에 따라 이러한 정보는 유용하게 사용될 수 있다고 판단된다.
학습자의 감성 상태가 충분히 반영되는 오프라인 수업과 달리 지금까지 대부분의 e-러닝은 학습자의 감성 정보를 수업에 효과적으로 반영하지 못했다. 이러한 한계점은 e-러닝의 학습 효과성을 저해하는 문제 중 하나로 지적되었다. 이 문제를 해결하기 위해 학습자의 뇌파를 통해 감성을 인식하고 감성 상태에 따라 적절한 학습 콘텐츠 타입을 추천하여 학습 효과를 증대 시킬 수 있는 방법론이 주목을 받고 있다. 본 논문에서는 기 수집된 학습자들의 감성(뇌파) 데이터를 분석하여 콘텐츠 타입 선호도를 파악한 후 프로파일 데이터를 활용하여 상관계수 기반 NN-Recommendation 학습 콘텐츠 타입 추천 시스템을 제안 하고자 한다. 이 시스템은 일반적인 추천시스템에서 발생하는 Cold-start 문제를 해결할 수 있으며 특히 본 연구에서는 보다나은 추천 정확도를 위해 프로파일 각 속성에 자동적으로 가중치를 부여하는 기법을 제시하여 향상된 성능을 보이게 됨을 실험을 통해 확인 하였다.
본 논문에서는 B2B e-Marketplace에 참여하는 비즈니스 파트너들에게 새로운 상품을 추천하기 위한 웹 에이전트 기반 추천 시스템을 제안한다. 본 논문에서 제시하는 추천 시스템은 비즈니스 파트너에 대한 정보를 수집하기 위한 모니터링 에이전트, 수집된 정보를 분석하기 위한 분석 에이전트, 그리고 분석결과를 이용하여 추천 서비스를 제공하기 위한 추천 에이전트로 구성된다. 이와 같은 웹 에이전트 기반의 추천 시스템은 다수의 공급자와 다수의 비즈니스 파트너가 참여하는 B2B 환경에서 실시간으로 비즈니스 파트너의 수요나 성향에 맞는 서비스 제공을 통해 공급자와 비즈니스 파트너간의 수요/공급 예측 및 협력관계를 향상시킬 수 있다.
본 연구는 웹 기반 학습평가를 위한 학습자 중심의 문제추천 시스템을 제안하였다. 문제추천 과정을 위하여 문항난이도가 이용되었으며, 각 문제들은 문제은행에 저장 및 관리되었다. 문항난이도는 학습과정 중 재 산출되며 다음 학습에서 피드백되었다. 학습자 중심 문제추천을 위해, 학습자는 학습 전 학습단원을 선택할 수 있으며 학습난이도를 설정할 수 있도록 하였다. 제안방법의 적용결과 대부분의 학습자들이 학습난이도 조절로 인하여 성적이 향상됨을 알 수 있었다.
구직자는 취업을 하기 위해 다양한 채용 공고를 확인하고 이력서를 제출하는데 많은 시간을 소비한다. 만약 채용 추천 시스템을 통해 사용자에게 알맞는 회사를 추천해 준다면 구직자는 구직 활동 시간을 절약할 수 있다. 이를 위해 본 논문에서는 구직자에게 알맞는 회사를 추천하기 위한 알고리즘을 알아본다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.