Journal of the Korea Society for Simulation (한국시뮬레이션학회논문지)
- Volume 15 Issue 3
- /
- Pages.23-30
- /
- 2006
- /
- 1225-5904(pISSN)
Simulation Study on E-commerce Recommender System by Use of LSI Method
LSI 기법을 이용한 전자상거래 추천자 시스템의 시뮬레이션 분석
Abstract
A recommender system for E-commerce site receives information from customers about which products they are interested in, and recommends products that are likely to fit their needs. In this paper, we investigate several methods for large-scale product purchase data for the purpose of producing useful recommendations to customers. We apply the traditional data mining techniques of cluster analysis and collaborative filtering(CF), and CF with reduction of product-dimensionality by use of latent semantic indexing(LSI). If reduced product-dimensionality obtained from LSI shows a similar latent trend of customers for buying products to that based on original customer-product purchase data, we expect less computational effort for obtaining the nearest-neighbor for target customer may improve the efficiency of recommendation performance. From simulation experiments on synthetic customer-product purchase data, CF-based method with reduction of product-dimensionality presents a better performance than the traditional CF methods with respect to the recall, precision and F1 measure. In general, the recommendation quality increases as the size of the neighborhood increases. However, our simulation results shows that, after a certain point, the improvement gain diminish. Also we find, as a number of products of recommendation increases, the precision becomes worse, but the improvement gain of recall is relatively small after a certain point. We consider these informations may be useful in applying recommender system.
추천자 시스템은 전자상거래 사이트에서 고객의 상품 구매 정보를 수집하여 고객에 대한 예상 구매 상품을 추천하는 목적으로 개발되었다. 본 연구는 대형 전자상거래 사이트에서 고객의 상품 구매 이력이 활용 가능한 경우에 전통적인 통계기법인 군집분석 및 고객 간의 상품 구매 상관성을 이용하는 기존 추천자 시스템(협력적 필터링 기법)과 문서 검색에서 사용되는 LSI분석에 기반한 협업 필터링 기법을 상품 추천에 적용하여 각 기법의 상품 추천 효율성을 비교 분석하였다. 문서-용어 행렬과 유사한 구조를 가지는 고객-상품 구매 행렬에 문서 검색에 사용되는 LSI 분석법은 고객의 상품구매 경향을 원 상품 수보다 축소된 차원의 변환 상품을 통하여 파악함으로써 목표고객에 대한 인접고객군의 생성 노력을 현저히 감소시킬 수 있어 결과적으로 실시간으로 적용되는 추천자 알고리즘의 효율성을 개선할 수 있을 것으로 기대할 수 있다. 가상적인 고객-상품 구매 리스트를 대상으로 실행한 시뮬레이션 실험 결과에서도 알고리즘의 효율성 평가측도인 recall과 정확도 및 F1에서 LSI 기반 협력적 필터링 기법이 기존의 방법보다 우수한 결과를 나타내었다. 시뮬레이션 결과, 인접고객 군의 크기가 일정한 수준에 이르면 그 크기를 증가시키더라도 알고리즘의 효율성은 별로 개선되지 않으며 또한 추천 상품 수가 일정 수준에 도달하면 추천 정확도가 낮아지는 정도에 비해 recall의 개선도는 별 변화가 없는 것으로 나타나고 있다. 추천자 시스템을 구현하는 용도에 따라 이러한 정보는 유용하게 사용될 수 있다고 판단된다.
Keywords