• Title/Summary/Keyword: 추천자 시스템

Search Result 253, Processing Time 0.029 seconds

Simulation Study on E-commerce Recommendation System (전자상거래 추천자 시스템에 대한 분석)

  • Kwon Chi-myung
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.56-62
    • /
    • 2005
  • 추천자 시스템은 E-commerce 사이트에서 소비자가 관심을 가지는 상품에 대한 정보를 수집하여 소비자가 구매할 것으로 예상되는 상품을 추천하는 목적으로 개발되었다. 추천자 시스템을 구축하여 성공적으로 활용하기 위해서 해결해야 할 과제로 취급 상품이 대량인 경우에 알고리즘의 효율성 문제라고 볼 수 있는데 본 연구는 문서 검색에서 사용되는 LSI(latent semantic indexing) 분석법을 이용하여 추천자 시스템을 개선하는 방안을 연구하고자 한다. LSI 분석법을 이용하여 고객-상품 구매행렬에서 고객이 상품을 구매하는 경향을 효과적으로 파악할 수 있다면 목표고객에 대한 인접고객군을 생성하는 계산 노력은 현저히 감소되어 추천자 알고리즘이 실시간으로 고객 데이터베이스로부터 많은 인접 고객을 효율적으로 검색할 수 있을 것으로 기대된다. 본 연구는 E-commerce 사이트로부터 얻는 실제적인 고객 자료와 유사한 자료를 시뮬레이션을 통하여 재생하고 이를 바탕으로 LSI에 의한 추천자 시스템의 효율성을 분석하고자 한다.

  • PDF

A Method for Recommending Learning Contents Using Similarity and Difficulty (유사도와 난이도를 이용한 학습 콘텐츠 추천 방법)

  • Park, Jae -Wook;Lee, Yong-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.127-135
    • /
    • 2011
  • It is required that an e-learning system has a content recommendation component which helps a learner choose an item. In order to predict items concerning learner's interest, collaborative filtering and content-based filtering methods have been most widely used. The methods recommend items for a learner based on other learner's interests without considering the knowledge level of the learner. So, the effectiveness of the recommendation can be reduced when the number of overall users are relatively small. Also, it is not easy to recommend a newly added item. In order to address the problem, we propose a content recommendation method based on the similarity and the difficulty of an item. By using a recommendation function that reflects both characteristics of items, a higher-level leaner can choose more difficult but less similar items, while a lower-level learner can select less difficult but more similar items, Thus, a learner can be presented items according to his or her level of achievement, which is irrelevant to other learner's interest.

A Reviewer Recommendation Algorithm in Journal Submission and Review Systems (저널 논문 투고 및 심사 시스템에서 심사자 추천 알고리즘)

  • Jeong, Yong-Jin;Kim, Yong-hwan;Kim, Chan-Myung;Han, Youn-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.1119-1121
    • /
    • 2014
  • 저널 논문 투고 및 심사시스템에서의 논문 제출은 상시 이루어진다는 특성 때문에 논문이 제출된 시점에 적절한 심사자들을 찾아 배정하기란 쉽지 않은 문제이다. 본 논문에서는 이러한 문제를 해결하기 위하여 제출된 논문에 적절한 심사자들을 추천해주는 알고리즘을 제시하고자 한다. 심사자 추천 알고리즘에서는 해당 논문의 전문가를 심사자로써 추천하기 위하여 제출된 논문들의 키워드(Keyword)와 심사자들의 전문지식태그(Expertise Tag) 정보를 활용한다. 또한 심사자들의 기존의 심사 정보를 토대로 심사활동지수를 평가하여 이를 심사자 추천에 활용하고자 한다. 제안하는 알고리즘을 검증하기 위하여 본 논문에서는 실제 저널 논문투고시스템에 추천 알고리즘을 적용해보고 이의 결과를 제시한다.

The Recommendation System based on Staged Clustering for Leveled Programming Education (수준별 프로그래밍 교육을 위한 단계별 클러스터링 기반 추천시스템)

  • Kim, Kyung-Ah;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.51-58
    • /
    • 2010
  • Programming education needs learning which is adjusted individual learners' level of their learning abilities. Recommendation system is one way of implementing personalized service. In this research, we propose recommendation method which learning items are recommended for individual learners' learning in web-based programming education environment by. Our proposed system for leveled programming education provides appropriate programming problems for a certain learner in his learning level and learning scope employing collaborative filtering method using learners' profile of their level and correlation profile between learning topics. As a result, it resolves a problem that providing appropriate programming problems in learner's level, and we get a result that improving leaner's programming ability. Furthermore, when we compared our proposed method and original collaborative filtering method, our proposed method provides the ways to solve the scalability which is one of the limitations in recommendation systems by improving recommendation performance and reducing analysis time.

Study on the development of learning content recommendation system using the algorithm of collective intelligence (집단 지성 알고리즘을 이용한 학습 콘텐츠 추천시스템 개발에 관한 연구)

  • Kim, Geun-Ho;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.241-243
    • /
    • 2014
  • In this study, that by applying the algorithm of collective intelligence in helping to select the teaching methods and learning methods of learner and teacher, develop a content recommendation system, the teacher and the learner promote effective learning, I have intended to And for this reason can be applied to education recommended system to be applied to a movie or shopping mall recently, at the time of selection, it is appropriate in accordance with the state, such as the level of the learner, learning environment, learners the theme of teaching and learning, and to provide a teaching method and learning method, the learner can to find the learning method appropriate for the user, and a more efficient, Professor system that can save time to design the teaching learning process I developed, The utility and accuracy of the learning content recommendation system developed finally, after the data is accumulated in the use of a continuous schedule of the learner and a teacher, would need to be validated through the rating.

  • PDF

Simulation Study on E-commerce Recommender System by Use of LSI Method (LSI 기법을 이용한 전자상거래 추천자 시스템의 시뮬레이션 분석)

  • Kwon, Chi-Myung
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • A recommender system for E-commerce site receives information from customers about which products they are interested in, and recommends products that are likely to fit their needs. In this paper, we investigate several methods for large-scale product purchase data for the purpose of producing useful recommendations to customers. We apply the traditional data mining techniques of cluster analysis and collaborative filtering(CF), and CF with reduction of product-dimensionality by use of latent semantic indexing(LSI). If reduced product-dimensionality obtained from LSI shows a similar latent trend of customers for buying products to that based on original customer-product purchase data, we expect less computational effort for obtaining the nearest-neighbor for target customer may improve the efficiency of recommendation performance. From simulation experiments on synthetic customer-product purchase data, CF-based method with reduction of product-dimensionality presents a better performance than the traditional CF methods with respect to the recall, precision and F1 measure. In general, the recommendation quality increases as the size of the neighborhood increases. However, our simulation results shows that, after a certain point, the improvement gain diminish. Also we find, as a number of products of recommendation increases, the precision becomes worse, but the improvement gain of recall is relatively small after a certain point. We consider these informations may be useful in applying recommender system.

  • PDF

Emotion Based e-Learning Contents Type Recommendation Using Profile (프로파일을 활용한 감성 기반 e-러닝 콘텐츠 타입 추천)

  • Shin, Min-Chul;Jung, Kyung-Seok;Choi, Yong-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.243-246
    • /
    • 2011
  • 학습자의 감성 상태가 충분히 반영되는 오프라인 수업과 달리 지금까지 대부분의 e-러닝은 학습자의 감성 정보를 수업에 효과적으로 반영하지 못했다. 이러한 한계점은 e-러닝의 학습 효과성을 저해하는 문제 중 하나로 지적되었다. 이 문제를 해결하기 위해 학습자의 뇌파를 통해 감성을 인식하고 감성 상태에 따라 적절한 학습 콘텐츠 타입을 추천하여 학습 효과를 증대 시킬 수 있는 방법론이 주목을 받고 있다. 본 논문에서는 기 수집된 학습자들의 감성(뇌파) 데이터를 분석하여 콘텐츠 타입 선호도를 파악한 후 프로파일 데이터를 활용하여 상관계수 기반 NN-Recommendation 학습 콘텐츠 타입 추천 시스템을 제안 하고자 한다. 이 시스템은 일반적인 추천시스템에서 발생하는 Cold-start 문제를 해결할 수 있으며 특히 본 연구에서는 보다나은 추천 정확도를 위해 프로파일 각 속성에 자동적으로 가중치를 부여하는 기법을 제시하여 향상된 성능을 보이게 됨을 실험을 통해 확인 하였다.

Recommendation System based on XML Web Agent in B2B e-Marketplace (B2B e-Marketplace에서 웹 에이전트 기반 추천 시스템)

  • Park, Sung-Joon;Kim, Young-Kuk;Kim, Ryong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.754-756
    • /
    • 2004
  • 본 논문에서는 B2B e-Marketplace에 참여하는 비즈니스 파트너들에게 새로운 상품을 추천하기 위한 웹 에이전트 기반 추천 시스템을 제안한다. 본 논문에서 제시하는 추천 시스템은 비즈니스 파트너에 대한 정보를 수집하기 위한 모니터링 에이전트, 수집된 정보를 분석하기 위한 분석 에이전트, 그리고 분석결과를 이용하여 추천 서비스를 제공하기 위한 추천 에이전트로 구성된다. 이와 같은 웹 에이전트 기반의 추천 시스템은 다수의 공급자와 다수의 비즈니스 파트너가 참여하는 B2B 환경에서 실시간으로 비즈니스 파트너의 수요나 성향에 맞는 서비스 제공을 통해 공급자와 비즈니스 파트너간의 수요/공급 예측 및 협력관계를 향상시킬 수 있다.

  • PDF

A Learner Tailoring Question Recommendation System for Web based Learning Evaluation System (웹 기반 학습평가를 위한 학습자 중심 문제추천 시스템)

  • Jeong, Hwa-Young;Kim, Eun-Won;Hong, Bong-Hwa
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.68-73
    • /
    • 2008
  • In this research, we proposed a learner tailoring question recommendation system for web based learning evaluation system. For teaming evaluation process, this system used the item difficulty Each question was stored and managed to the question bank. Item difficulty was recalculated during teaming process and feedback in next course. For learner tailoring question recommendation, learner could choice the teaming part and set the learning difficulty. In application result of proposal method, almost learner could improve learning score by controling teaming difficulty.

A Study of Recommendation Algorithms for Job Seekers (구직자를 위한 추천 알고리즘 연구)

  • Park, Joon-Ho;Kim, ji yong;Park, Jin-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.602-604
    • /
    • 2017
  • 구직자는 취업을 하기 위해 다양한 채용 공고를 확인하고 이력서를 제출하는데 많은 시간을 소비한다. 만약 채용 추천 시스템을 통해 사용자에게 알맞는 회사를 추천해 준다면 구직자는 구직 활동 시간을 절약할 수 있다. 이를 위해 본 논문에서는 구직자에게 알맞는 회사를 추천하기 위한 알고리즘을 알아본다.