• Title/Summary/Keyword: 추진체 제어기

Search Result 81, Processing Time 0.119 seconds

Performance Dispersion Analysis of Gas Generator Cycle Liquid Rocket Engine (가스발생기 사이클 액체 로켓 엔진의 성능 분산 해석)

  • Choi Hwan Seok;Nam Chang Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.87-91
    • /
    • 2004
  • It is definitely required to control dispersion of the rocket engine performance in order to accomplish the mission of launch vehicle successfully. We performed the dispersion analysis of gas generator cycle LRE (liquid rocket engine) accompanied with ANASYN. As a result, the vacuum thrust dispersion of the engine was $+5.34\%,\;-5.27\%$ and the mixture ratio deviated $+9.07\%,\;-9.82\%$ from the nominal value due to the errors of components and engine inlet condition of propellants. By applying the gas generator regulator only, the dispersion of the engine performance increases. Error in turbine efficiency is the most influential factor to the dispersion of engine performance.

  • PDF

A Study on Buzz Margin Control in Supersonic Engine Intake using PID Controller (PID 제어기를 이용한 초음속 엔진 흡입구의 버즈마진 제어에 관한 연구)

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Kang, Myoung-Cheol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.88-92
    • /
    • 2009
  • Total pressure recovery ratio in intake is crucial factor to the operational characteristics of supersonic propulsion system because it does not compress inlet air mechanically by compressor, but does compress inlet air by ram compression. As the result of that the dynamic characteristic analysis of engine was performed before the controller was designed, it could be ascertained when the AoA of flight vehicle increases, the buzz margin decreases so that the shock wave produced outside intake in the specified area according to flight operation's characteristics. Therefore the PID control algorithm was designed to be controlled buzz margin that the characteristic of shock wave could meet the requirement of performance in intake. The PID controller was designed that the buzz margin value is being positive number using the control variables; fuel flow and nozzle throat area.

  • PDF

Operation and Result Analysis of Hydraulic Vehicle Holding Device (발사체 지상고정장치 유압시스템 작동 시험 및 결과 분석)

  • Kim, Dae Rae;Yang, Seong Pil;Lee, Jae Jun;Song, Oh-Seob;Lee, Young-Shin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.80-88
    • /
    • 2018
  • The function of a vehicle holding device (VHD) is to securely hold a launch vehicle on the launch pad and release the launch vehicle at maximum thrust after engine ignition to allow lift-off of the launch vehicle. During the release of the launch vehicle, to prevent the Ka doing a doing a doing mode, which is the vertical oscillation of the entire liquid propellant, the release of the launch vehicle should be gradual. In this study, for the gradual release of a launch vehicle, a hydraulic system comprising an accumulator and pyro valve to operate a hydraulic cylinder and control the speed of the cylinder with an orifice is introduced. Through a test, the influence of design variables on the cylinder speed is analyzed. Based on this, the design values of the hydraulic cylinder are determined. Through this study, the engineering basis for developing a VHD releasing a launch vehicle at maximum thrust is provided.

Exhaust Plume Behavior Study of MMH-NTO Bipropellant Thruster (MMH-NTO 이원추진제 추력기의 배기가스 거동 해석 연구)

  • Kim, Hyeonah;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.300-309
    • /
    • 2017
  • A spacecraft obtains a reaction momentum required for an orbit correction and an attitude control by exhausting a combustion gas through a small thruster in space. If the exhaust plume collides with spacecraft surfaces, it is very important to predict the exhaust plume behavior of the thruster when designing a satellite, because a generated disturbance force/torque, a heat load and a surface contamination can yield a life shortening and a reduction of the spacecraft function. The purpose of the present study is to ensure the core technology required for the spacecraft design by analyzing numerically the exhaust gas behavior of the 10 N class bipropellant thruster for an attitude control of the spacecraft. To do this, calculation results of chemical equilibrium reaction between a MMH for fuel and a NTO for oxidizer, and continuum region of the nozzle inside are implemented as inlet conditions of the DSMC method for the exhaust plume analysis. From these results, it is possible to predict a nonequilibrium expansion such as a species separation and a backflow in the vicinity of the bipropellant thruster nozzle.

인공위성 자세제어용 센서와 구동기

  • 김유단;방효충;김진호
    • ICROS
    • /
    • v.3 no.3
    • /
    • pp.29-35
    • /
    • 1997
  • 본 논문에서는 인공위성의 자세를 측정하는 장치로서 태양센서, 지구수평센서, 자이로스코프, 별센서, 자장계 등의 자세감지장치와 궤도조정 및 자세제어를 하기 위한 모멘텀 휠, 반작용 휠, 가스 제트 추력기 등 각종 구동장치의 기술적 특성에 대해서 검토하고자 한다. 본 논문의 주목적은 최근 국내에서 활발히 추진되고 있는 인공위성 개발 사업 관련 위성체와 관련된 일반의 관심을 증대시키고 관련 실무 지식을 소개하고자 하는데 있다.

  • PDF

Development of Attitude Control Thruster for KOMPSAT (다목적 실용위성 자세제어용 추력기 개발)

  • 이성택;이상희;최영종;류정호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.67-73
    • /
    • 1997
  • This paper shows the development status of attitude control thruster for KOMPSAT(Korea Multi-Purpose Satellite). Hanwha Corp. has manufactured and delivered 1.0 lbf monopropellant thrusters under the technology transfer of TRW Co. in U.S.A regarding design, analysis and manufacturing of MRE-1 thruster These thrusters will be installed to KOMPSAT which is scheduled to be launched in July 1999. Monopropellant thrusters can provide reliable and cost-effective means of propulsive control for middle class satellite and maneuvering control systems. Some information concerning with system specification, performance analysis/simulations and manufacturing process has been introduced in this paper.

  • PDF

An Approach to the Optimization of Catalyst-bed L/D Configuration in 70 N-class Hydrazine Thruster (70 N급 하이드라진 추력기의 촉매대 형상(L/D) 최적화 연구)

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.30-37
    • /
    • 2013
  • A ground hot-firing test was conducted to take out the optimal design configurations for the catalyst bed of liquid-monopropellant hydrazine thruster which could be used for primary engine or attitude control thruster of space vehicles. Performance characteristics with the variation of thrust-chamber length are investigated in terms of thrust, specific impulse, chamber pressure, characteristic velocity, and hydrazine decomposition rate. Additionally, the correlations between propellant-supply pressure and performance parameters are given. As results, increase of catalyst-bed length leads to performance degradation in this test condition, and also decreases propellant consumption efficiency with the supply pressure variation.

Study on the Development Trend of Pressurization System for Propulsion System of Launch Vehicle (발사체 추진기관 가압시스템 개발 사례 연구)

  • Shin, Dong-Sun;Kim, Byung-Hun;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.721-724
    • /
    • 2011
  • A system to pressurize propellants stored in propellant tanks is necessary to feed liquid-propellants into combustion devices at the required pressure and flowrate without having cavitation in turbo-pumps. A pressurization system can be categorized into pre-pressurization stage and main-pressurization stage. This report is regarding to a main-pressurization system. Pressurization methods for propellant tanks are divided into pressurant gas generating method and pressurant gas feeding method. One of pressurant gas generating methods uses the vaporized oxygen gas from cryogenic liquid oxygen and non-flammable gas. In this report, both advantages and disadvantages for pressurization methods and types of pressurization systems are compared. Especially the characteristics and principle of pressurization system using impulsive control strategy applied in launch vehicles are introduced. Additionally the structure, schematics, and specifications of heat exchanger, which is one of main units in pressurization system are also discussed. This paper can be utilized to generate the conceptual requirements and to design preliminary configuration of pressurization system during the development of launch vehicle.

  • PDF

Static Structural Analysis of 75 tonf-class Engine with TVC actuation force (TVC 구동력을 고려한 75톤급 엔진 정적 구조 해석)

  • Yoo, Jaehan;Gwak, Junyoung;Kim, Okgu;Jeon, Seongmin;Jeong, Eunhwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.913-914
    • /
    • 2017
  • Structural analyses of a engine system is required in development stage for increasing structural reliability and reducing weight. Attitude of a launch vehicle during flight is controlled by combustion chamber rotation varying with TVC (thrust vector control) actuator displacements. In this study nonlinear static analysis is performed for a 75 tonf-class liquid rocket engine using before and after the TVC actuation.

  • PDF

Results Analysis for On-orbit Operation of KOMPSAT-1 Propulsion System (다목적실용위성 1호 추진시스템 궤도운용 결과 분석)

  • 김정수;한조영;진익민
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.107-113
    • /
    • 2000
  • Design configuration and performance requirements for KOMPSAT-1 propulsion system were described. Operational results of the propulsion system obtained through the satellite Launch and Early Operation Phase were scrutinized. Performance characteristics of the thrusters which are employed for spacecraft attitude control and the corresponding propellant depletion rate were analysed according to satellite operation modes. Additionally, propellant leakproof and thermal control capability were checked out from the view point of system verification. Propellant depletion rates calculated by PVT method in $\Delta$V maneuvering and each attitude control mode produce the very meaningful results for the prediction of total propellant consumption up to the end of satellite mission life.

  • PDF