• Title/Summary/Keyword: 추진기관 시스템

Search Result 611, Processing Time 0.026 seconds

Optimum Configuration for Pressurization System of Propellant Tank (추진제 탱크 가압 시스템의 최적 구성)

  • Jung, Young-Suk;Cho, Nam-Kyung;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.133-142
    • /
    • 2010
  • Propulsion system of launch vehicle is composed with subsystems as propellant tank, pressurization system, propellant fill/drain system, valve operating system, purge system and so on. Among others, pressurization system is the most important subsystem, because of the real-time control part for pressure control of propellant tank. Therefore, it is the subsystem that must be primarily considered on conceptual design process. In this paper, the data of the previously developed pressurization systems were collected and the optimum configuration was selected by analysis of advantage and disadvantage of the systems.

Introduction to the Propulsion Systems for the Next Generation Flight Vehicles (차세대 비행체 추진기관 시스템 소개)

  • 이대성;양수석;차봉준;한영민;김춘택
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.74-82
    • /
    • 2000
  • The concept and characteristics of the propulsion systems for the next generation flight vehicles are described in this paper, where Hey are grouped into air breathing engine, rocket engine and combined cycle engine according to the feeding system of oxidizer. Air breathing engine has its good reusability and superior performance at low altitude, but its usage is limited at high altitude due to the decreased air density. Rocket engine can be used over the wide range of altitude, but it has disadvantages in low specific impulse and high cost. The several types of combined cycle engine, which are being developed by the leading countries in the aerospace, are highlighted as a remarkable candidate for the next generation propulsion system.

  • PDF

Development of Underwater Rocket Propulsion System for High-speed Cruises (고속 주행을 위한 수중용 로켓추진기관 개발)

  • Kwon, Minchan;Yoo, Youngjoon;Heo, Junyoung;Hwang, Heeseong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.112-118
    • /
    • 2019
  • The development of an underwater rocket propulsion system was described in this paper. Throttle able liquid propellant and hybrid rocket propulsion systems were selected for underwater propulsion. A subscale liquid rocket combustion chamber and it's portable stand were developed and their applicability was examined. 1.5-ton.f and 1.8-ton.f hybrid rockets were developed for underwater applications. The test results indicated that the 18-ton.f hybrid rocket fully complies to the performance and underwater cruise stability requirements; thus, its development was concluded to be successfully complete.

An Overview of IM Technology Development for Solid Rocket Motor (고체추진기관 둔감화 개발동향)

  • Yoo, Ji-Chang;Kim, Chang-Kee;Min, Byoung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.189-192
    • /
    • 2010
  • In this study, insensitive munitions(IM) policies and technologies of advanced countries for solid rocket motor were investigated. Development trends and caseworks of each part such as propellant and motor case of rocket motor for IM were also studied. Based on these investigation and analysis for IM rocket motor, directions of the development for IM rocket motor in our country were suggested.

  • PDF

Working Point Control Characteristics of Pressure-Fed Rocket Propulsion System (가압방식 로켓추진기관시스템의 작동점 제어특성)

  • 하성업;정영석;이중엽;정태규;조상연
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.31-34
    • /
    • 2003
  • To trace the working point of pressure-fed rocket propulsion system, direct analogy model was suggested, by which propellant mass flow rate and combustion chamber pressure were calculated from propellant tank pressures, levels and flight acceleration. In this paper, the analysis of KSR-III flight test results was taken by example, and it can be described that working point transition tendency of pressure-fed rocket propulsion system can be calculated by this direct analogy model.

  • PDF

A Construction Scheme of Control System in a Ground Hot-firing Test Facility (지상연소시험설비의 제어시스템 구축 방안)

  • Lee, Kwang-Jin;Kim, Ji-Hoon;Kim, Seung-Han;Han, Young-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.468-471
    • /
    • 2012
  • This paper describes a construction scheme of hot backup or triple modular redundancy control system in a ground hot-firing test facility to carry out performance assessment of propulsion system used in a space launch vehicle. It was possible for a hot backup redundancy control system with manual operated console to simulate TMR control system. A console layout of control system in control center to restrict imprudent works of operators was proposed.

  • PDF

Design of Cold-flow Test Equipment Considering Dynamic Similarity for DACS Verification (동적상사를 고려한 DACS 검증용 공압 시험장치 설계)

  • Bae, Sangho;Chang, Hongbeen;Park, Iksoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.374-377
    • /
    • 2017
  • A cold-flow test equipment was designed to carry out the performance verification of TDACS. For that purpose, the pressure dynamics in the solid rocket motor combustor and the cold-flow test was modeled, and the response time showing the dynamic characteristics of each model was obtained. In this paper, the system response time of the cold-flow test was designed to be equal to that of the motor, making the dynamic response in cold-flow and hot gas condition to be similar.

  • PDF

Dynamic Modeling and Characteristics Analysis of Solid Rocket Motor with Multi Axis Pintle Nozzles (다축 핀틀 노즐을 장착한 고체 추진기관의 동적 모델링 및 특성 분석)

  • Ki, Taeseok;Hong, Seokhyun;Park, Ik-soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.20-28
    • /
    • 2015
  • Performance parameters of solid rocket motor with multi axis pintle nozzles were analyzed theoretically and modeled. For figuring out the governed variable of dynamic characteristics of system, dynamic analysis was done by using established model. To present characteristics of this system, the model should include not only internal ballistics of propulsion unit but also actuating system to move pintle. For solid rocket motor with multi axis pintle nozzles, not only performance of steady state but also dynamic characteristic of transient state is important design parameter to precise thrust control. Therefore, response time of open-loop system was analyzed by using established model and requirement about response time was satisfied by controlling pressure.

An Enterprise Portal of The Ministry Of Health And Welfare (보건복지부 Enterprise Portal 추진 방향 및 구축 운영 사례)

  • Hong, Young-Suk;Mun, Gyeong-Tae;Seonu, Jong-Seong;Hong, Hwa-Yeong
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.205-214
    • /
    • 2005
  • 보건복지부는 "보건복지 내부업무 포탈 및 EAM시스템 구축" 이라 명명된 Enterprise Portal 프로젝트를 공공기관 최초로 추진하여 기존의 정보시스템들이 업무 및 지식 기반 하에 유기적으로 상호 연계 및 연동되는 체계적이고 확장성이 뛰어난 포탈시스템으로 구축하였다. 본 논문에서는 보건복지부 정보화 비전 및 추진 현황에 대한 설명과 EP(Enterprise Portal)시스템 도입의 개념 및 장점에 대해 기술하고, 보건복지부가 Enterprise Portal 시스템을 도입하게 된 추진 배경과 기존 시스템(전자결재, 지식관리, 문서관리, 커뮤니티, 게시판, 검색)에 어떻게 적용하였는지에 대해 설명하고자 한다. 아울러 Enterprise Portal 시스템의 적용으로 인한 실제적 효과 및 고려해야 할 문제점에 대해 기술함으로써 향후 Enterprise Portal 시스템을 도입하고자 하는 공공기관/기업체에 추진 방안 및 대응 방안을 제시하고자 한다.

  • PDF

자율운항선박 핵심 기관시스템 성능 모니터링 및 고장예측 진단 기술 개발

  • 박재철;권혁찬;이갑헌;장화섭
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.265-267
    • /
    • 2022
  • 선박 기관시스템이 효율적이고 안이정적인 운용을 위해서는 실시간 상태 모니터링 기반의 이상탐지, 고장진단 더 나아가 고장예측에 따른 대응조치를 할 수 있는 기술이 필요하며 이를 상태기반 유지관리(Condition Based Maintenance, CBM)이라 지칭한다. 해당 기술을 개발 및 확보하기 위해서는 가장 우선적으로 기관시스템에 대한 다양한 고장 데이터가 확보되어야 하며 이후, 확보된 데이터에 대한 특징추출 등 전처리 알고리즘, 고장 진단 및 예측 알고리즘 등을 개발하여야 한다. 본 연구에서는 선박 추진용 엔진 및 발전기 엔진에 대한 상태기반 유지관리 기술의 개발현황과 향후 지속적인 연구 추진방향을 소개하고자 한다.

  • PDF